Меню

Защита системы возбуждения генератора



Комплекс защит системы возбуждения

Программный модуль защит входит в каждый канал регулирования, при этом оба модуля защит всегда находятся в работе независимо от состояния канала регулирования (канал в работе или в резерве) и выдают выходные воздействия одновременно.

Каждый модуль защит содержит набор защит системы возбуждения и защит генератора, связанных с возбуждением.

1. Защита от потери возбуждения,реализуется двумя способами.

1.1 При потере сразу двух каналов регулирования, в случае отключения автоматов SF3 и SF4 или автомата SF5 система управления кассетой КРУ подает импульс на гашении поля и отключения выключателя генератора.

1.2 Защита от потери возбуждения, действующая по принципу контроля реактивной мощности генератора. В режиме работы без возбуждения генератор потребляет индуктивную мощность из системы величиной, близкой к Qном, и для выявления режима потери возбуждения уставка срабатывания ЗПВ по реактивной мощности генератора должна больше 0,6 Qном, отрицательная; при этом дополнительно контролируется, что ток возбуждения возбудителя IВВ ≤ 0,1IВВ ном. Время действия защиты — 2сек, действие — на отключение выключателя генератора и гашение поля.

3. Защита от КЗ в схеме вращающегося возбудителя. предназначена для действия при междуфазных КЗ в обмотке якоря возбудителя ВБД или пробое вращающихся диодов. Поскольку замерить непосредственно ток в цепи ротора замерить невозможно, короткое замыкание выявляется по возникновению в токе возбуждения возбудителя пульсаций переменного тока частотой 400 ÷ 800 Гц. Защита срабатывает при увеличении амплитуды переменной составляющей частотой 400÷800 Гц в токе возбуждения возбудителя

4. Токовая отсечка возбудителя. действует по увеличению тока возбуждения возбудителя свыше 2,6 IВВном. во всех режимах работы генератора. Ток защиты замеряется на стороне выпрямленного напряжения тиристорных преобразователей возбуждения возбудителя.

5. Защита от перегрузки тока возбуждения. Защита реализуетдопустимую времязависимую характеристику перегрузки тока ротора генератора. Ввиду невозможности замерить непосредственно ток ротора генератора, перегрузка выявляется по увеличению тока возбуждения возбудителя в соответствии с его времязависимой характеристикой допустимого перегруза, соотнесенной с характеристикой тока ротора.

6. Защита от повышения напряжения статора генератора в режиме холостого хода. Уставка защиты Uсраб. ≥ 1,2 Uном. Выходное воздействие — гашение поля генератора отключением автоматов SF3 и SF4.

7. Защита от снижения частоты генератора в режиме холостого хода. Уставка защиты fсраб. ≤ 45 Гц. Выходное воздействие — гашение поля генератора отключением автоматов SF3 и SF4.

Все защиты возбуждения, действующие на включенном в сеть генераторе, выдают через платы отключения ПО1 и ПО2 сигналы на гашение поля отключением автоматов SF3 и SF4 тиристорных преобразователей и через отдельные реле выходное воздействие на отключение выключателя генератора.

Источник

Особенности защиты генераторов с ТВ и их систем возбуждения.

1. Токовые защиты выпрямительного трансформатора TE

Защиты включаются на ТТ, установленные со стороны высокого напряжения ТЕ.

1.2. МТЗ. Уставка защиты выбирается по отстройке от тока ротора в режиме форсировки возбуждения. МТЗ защищает сам ТЕ, выпрямители и всё низковольтное оборудование системы возбуждения.

Выходные воздействия обеих защит, — отключение выключателя генератора (блока) и

гашение поля генератора.

2. Защиты ротора генератора

Токовые защиты ротора подключаются к трансформаторам тока низкой стороны ТЕ

т.е. «видят» все неисправности схемы выпрямления и схемы постоянного тока со

стороны переменного напряжения.

2.1. Защита от неуправляемой форсировки

Защита предназначена для действия в случае отказа ограничителя максимального

тока 2Iрот. ном. Уставка защиты

Квыпр – коэффициент выпрямления, для трехфазной схемы равен 0,816.

Первое выходное воздействие защиты с временем t= 0 сек, — на отключение

АРВ-СД; второе, если ток ротора не уменьшается, с t= 0,5 сек, — на отключение

выключателя и гашение поля генератора.

2.2. Защита от длительной форсировки

Защита предупреждает перегрев ротора в случае затяжной форсировки возбуждения. Уставка по току защиты

Защита с уставкой по времени первой ступени t1 =40 сек действует на вывод из работы АРВ-СД, со второй t2 =45 сек — на отключение выключателя и гашение поля генератора.

Действие защит потребуется в случае отказа блока ограничения перегрузки БОП.

Исправный БОП ограничит ток ротора до значения Iрот.ном значительно раньше, не допуская срабатывания защиты.

2.3. Защита от КЗ на стороне постоянного тока

Датчиком для такой защиты служит датчик постоянного тока, установленный на стороне выпрямленного напряжения схемы ТВ. Замеряемый датчиком параметр, — напряжение, пропорциональное току ротора, снимается с калиброванного шунта Rд, врезанного в цепь тока ротора. Защита должна срабатывать при КЗ в схеме постоянного тока ТВ, например, замыкании между собой колец ротора. Уставка защиты отстраивается от тока форсировки с большим запасом и проверяется по чувствительности к металлическому КЗ между полюсами (+) и (-) схемы возбуждения. Обычно Iсраб. принимается равным 3÷3,5 Iрот.ном, выходное воздействие защиты – мгновенное отключение выключателя генератора и на гашение поля.

Однако, для таких защит трудно обеспечить надежное несрабатывание в переходных режимах работы возбуждения, поэтому эти защиты пока переводят действием на сигнал.

2.4. Защита ротора и цепей возбуждения от замыкания на землю в одной точке

В качестве защиты от замыкания на землю в одной точке используются разработанные ранее комплекты защит ротора типа КЗР-3 с ВУ-2, либо новый вариант этой защиты блоки БЭ-1104 с БЭ-1105. Действие этих защит, используемых для гидрогенераторов – на отключение генератора с временем t= 3÷5 сек, а для турбогенераторов, — на сигнал. Для турбогенераторов при этом должна вводится в работу защита от КЗ на землю ротора в двух точках с действием на отключение.

3. Защита ТП возбудителя

3.1. Защита по понижению частотына отключенном от сети генераторе

Защита предупреждает повреждение тиристорных преобразователей в случае сбоя в схеме автоматики останова агрегата, если не произошло гашение поля после отключения выключателя, и генератор снижает обороты, останавливается с непогашенным полем ротора. Со снижением оборотов уменьшается Uстатора, и регулятор возбуждения сначала стремится поднять ток ротора вплоть до тока форсировки 2Iрот. ном. Однако по мере дальнейшего снижения частоты амплитуда синхронизирующего напряжения блока управления СУТП уменьшится настолько, что будет нарушена очередность подачи на тиристоры управляющих импульсов и их длительность. Это приведет к междуфазным КЗ на стороне переменного тока системы ТВ, перегоранию предохранителей и повреждению тиристоров в преобразователях.

Нижний предел гарантированной заводом работы регулятора по частоте – 39,5Гц. Поэтому уставку защиты по частоте принимают fmim= 45÷42,5Гц, и действует она с

временем t= 0 на гашение поля генератора отключением АГП.

4. Защиты генератора при отклонениях в работе системы возбуждения

4.1. Защита от асинхронного режима генератора с возбуждением.

Асинхронный режим генератора с возбуждением может быть вызван или снижением тока ротора, или внешними причинами, такими как грубая синхронизация, затяжное КЗ на шинах станции и др. Защита выявляет асинхронный режим работы возбужденного генератора и выдает воздействие, — отключение после одного или нескольких проворотов генератора.

Принцип действия этой защита рассматривается в курсе «Защиты генератора».

4.2. Защита от асинхронного режима генератора без возбуждения.

4.2.1. Если потеря возбуждения генератором произошла в результате отключения всех тиристорных преобразователей системы возбуждения, защита это выявляет и действует сразу, без выдержки времени на отключение выключателя генератора.

4.2.2. В других случаях потери возбуждения для выявления ненормального режима используется дистанционное реле с круговой характеристикой, смещенной в сторону оси (-X).

Дистанционный орган защиты срабатывает, когда сопротивление Zнагрузки генератора, а, следовательно замер реле, переместится в 4 квадрант системы координат R,X(режим генератора +Р,-Q).

Уставка круга дистанционного органа определяется координатами его диаметра АВ:

здесь X’d- переходное сопротивление,

Xd- продольное синхронное сопротивление генератора.

Защита выявляет режим работы генератора без возбуждения и выдает соответствующее воздействие:

— на снижение мощности турбины, если асинхронный режим

— на отключение генератора от сети с временем t= 2сек,

если режим запрещен.

Заключение

Весь комплекс устройств управления ТВ, включая схему управления возбуждением, СУТП и регуляторы напряжения действуют как единый комплекс по автоматическому управлению возбуждением во всех режимах работы генератора. Комплекс решает вопросы регулирования тока возбуждения в нормальных и аварийных режимах энергосистемы и обеспечивает статическую и динамическую устойчивость длинных нагруженных линий передач.

Комплекс контролирует состояние всех систем ТВ, в случае неисправности вводит ограничения по возбуждению, сохраняя генератор в работе, обеспечивает защиту ТВ и его элементов в аварийных случаях.

Источник

Защита системы возбуждения генератора

Для повышения чувствительности защиты генераторов мощностью 100 МВт и более, имеющих большой собственный емкостный ток, применяется более сложная схема защиты, принцип которой пояснен на рис. 3 5. В этой схеме применяется компенсация емкостного тока генератора при внешних замыканиях на землю. Компенсация осуществляется с помощью расположенной на каждом сердечнике ТНПШ третьей (дополнительной) обмотки, к которой через конденсатор С (рис. 3 5, а) емкостью 6 мкФ подается напряжение нулевой последовательности 3U от ТН, установленного на выводах генератора. В качестве компенсационных обмоток используются расположенные на стержнях ТНПШ блокирующие обмотки. Эти обмотки, соединенные в заводском исполнении встречно-последовательно, включаются согласно-параллельно.

Рис 3 5 Принцип действия защиты генератора от замыкании на землю с компенсацией собственного емкостного тока.

При внешнем замыкании на землю в каждом сердечнике ТНПШ будут создаваться два компенсирующих магнитных потока (для упрощения не будем упоминать магнитный поток, создаваемый обмоткой подмагничивания): поток, создаваемый первичным током Фз и поток, создаваемый компенсационной обмоткой, Фк.

При замыкании на землю в обмотке статора генератора направление потока Фз изменится на обратное, в то время как направление Фк останется прежним. В результате эти потоки будут суммироваться, повышая чувствительность защиты к повреждениям в генераторе. Степень компенсации можно изменять, изменяя число витков компенсирующей обмотки.

Первичный ток срабатывания грубого реле защиты от замыканий на землю, действующего на отключение генератора без выдержки времени, принимается 100—200 А.

Читайте также:  Рено логан 2010 натяжение ремня генератора

5.Защита от перегрузок, защита от внешних междуфазных к.з. Схема, расчет уставок. МТЗ с комбинированной блокировкой по напряжению.

Максимальная токовая защита с блокировкой по напряжению. Максимальная токовая защита устанавливается для защиты генераторов от сверхтоков, вызванных внешними КЗ. Три максимальных реле тока К.А1 включены на фазные токи генератора (рис. 3.6). При таком включении токовых реле обеспечивается срабатывание защиты при любом виде КЗ как в сети генераторного напряжения, так и на стороне высшего напряжения силовых трансформаторов, соединенных по схеме У/Д. Токовые реле максимальной токовой защиты обычно подключаются к ТТ, установленным со стороны выводов обмотки статора. При этом токовая защита обеспечивает резервирование основной продольной дифференциальной защиты генератора при многофазных КЗ в обмотках статора.

Рис. 3.6. Схема максимальной токовой защиты с блокировкой по напряжению:
а — токовые цепи; б — цепи напряжения; в — цепи оперативного тока.

Так как токовые реле будут срабатывать не только при КЗ, но и при перегрузках, когда нет необходимости отключать генератор, в схему защиты вводится блокировка по напряжению. Эту блокировку можно выполнить с помощью трех реле минимального напряжения. Однако для повышения чувствительности защиты к КЗ за трансформаторами и реакторами на генераторах используется обычно блокировка с двумя реле напряжения: реле напряжения обратной последовательности и минимальным реле напряжения, включенным на междуфазное напряжение (см. рис. 3.6).

Реле напряжения в этой схеме включены так, чтобы обеспечить высокую чувствительность ко всем видам КЗ. При перегрузках, не сопровождающихся значительным снижением напряжения, минимальное реле напряжения KV1 будет держать контакты KV1.1 разомкнутыми, предотвращая ложное срабатывание защиты. При несимметричных КЗ сработает реле напряжения обратной последовательности KV2 и разомкнет контакт KV2.1, снимая напряжение с обмотки реле KV1. Реле минимального напряжения KV1 замыкает свой контакт и с помощью промежуточного реле KL подготавливает цепь обмотки реле времени К.Т1. При трехфазном КЗ минимальное реле напряжения KV1 замкнет свой контакт, разрешая действовать защите.

Благодаря тому, что в цепь обмотки минимального реле напряжения включен размыкающий контакт KV2.1 (рис. 3.6), чувствительность блокировки к трехфазным КЗ повышается. Действительно, поскольку в первый момент трехфазного КЗ хотя бы кратковременно существует несимметрия, реле KV2 разомкнет, а реле KV1 замкнет контакт независимо от удаленности места КЗ. После того как несимметрия исчезнет и КЗ станет симметричным, реле KV2 замкнет контакт KV2.1 и на обмотку реле KV1 будет подано напряжение. Если напряжение возврата минимального реле напряжения будет больше, чем остаточное напряжение на его обмотке, контакт реле останется замкнутым и защита может подействовать на отключение. Поскольку при этом реле KV1 в рассматриваемой схеме работает на возврат, а напряжение возврата минимального реле напряжения превышает напряжение срабатывания, то обеспечивается более высокая чувствительность к трехфазным КЗ.

Реле напряжения KV1 может замкнуть свой контакт в нормальном режиме при неисправности цепей напряжения, вследствие чего будет снята блокировка токовых реле. Для того чтобы персонал мог своевременно принять меры к восстановлению цепей напряжения, в схеме предусмотрена сигнализация, срабатывающая при их повреждении. Плюс на сигнал подается через вспомогательный контакт SQ выключателя генератора, что необходимо для предотвращения действия сигнализации, когда генератор отключен.

При выполнении защиты следует иметь в виду, что недопустимо включать реле напряжения блокировки и устройства форсировки и регулирования возбуждения генератора на общий ТН, так как в случае отключения автоматического выключателя в общих цепях напряжения может ложно подействовать защита и отключить генератор. Ток срабатывания токовых реле отстраивается от номинального тока генератора

Напряжение срабатывания минимального реле напряжения отстраивается от минимального значения эксплуатационного напряжения

Для предотвращения неправильного действия защиты при самозапуске электродвигателей собственных нужд, когда напряжение на шинах генератора значительно снижается, допускается в случае необходимости уменьшать напряжение срабатывания реле напряжения до 0,5UHOM. Снижение уставки минимального реле напряжения целесообразно также на генераторах, которые могут работать в асинхронном режиме.

Напряжение срабатывания реле напряжения обратной последовательности принимается минимально возможным, отстроенным от напряжения небаланса на выходе фильтра. Обычно принимается вторичное напряжение срабатывания порядка 6 В обратной последовательности, фазное на входе фильтра.

Выдержка времени защиты устанавливается на одну-две ступени больше выдержки времени защит трансформаторов и линий, отходящих от шин генераторного напряжения. В ряде случаев защита выполняется с двумя выдержками времени: с первой через проскальзывающий контакт реле времени КТ1.1 подается сигнал па отключение секционных и шиносоединительных выключателей трансформатора, связывающих данную секцию или систему шин с соседними, а со второй выдержкой времени КТ1.2 — на отключение генератора.

На генераторах мощностью менее 1000 кВт допускается установка максимальной токовой защиты без блокировки по напряжению.

Максимальная тоновая защита от перегрузки. Защита от перегрузки, действующая на сигнал, выполняется с помощью одного токового реле КА2 (см. рис. 3.10), так как перегрузка имеет место одновременно во всех фазах. Для того чтобы защита не срабатывала при кратковременных перегрузках, в схему введено реле времени КТ2, термически стойкое при длительном прохождении тока по его катушке.

Ток срабатывания токового реле КА2 отстраивается от номинального тока генератора:

Выдержка времени устанавливается больше выдержки времени максимальной токовой защиты генератора. На гидроэлектростанциях без постоянного дежурного персонала защита от перегрузки выполняется с двумя выдержками времени: с меньшей на снижение тока возбуждения для уменьшения тока статора и с большей — на отключение генератора.

3-6.Токовая защита обратной последовательности.

Как уже отмечалось, токи обратной последовательности представляют большую опасность для генераторов. Поэтому на генераторах мощностью более 30 МВт применяется токовая защита обратной последовательности от внешних несимметричных КЗ. Схема такой защиты для генератора с косвенным охлаждением приведена на рис. 3.7.

Рис. 3.7. Токовая защита обратной последовательности с реле РТ-2 и приставкой для действия при трехфазных КЗ:
а — тоновые цепи; б — цепи напряжения; в — цепи оперативного тока.

При возникновении несимметричного КЗ сработает токовое реле КА2, через замыкающий контакт которого будет подан плюс на обмотку реле времени КТ. По истечении выдержек времени проскальзывающего КТ.1 и упорного КТ.2 контактов будут замкнуты цепи промежуточных реле, которые подействуют на отключение соответствующих выключателей.

Ток срабатывания ступени защиты с токовым реле КА2 принимается равным;

Выбранный в соответствии с (9.13) ток срабатывания реле КА2 не должен превышать значения тока обратной последовательности, прохождение которого допустимо для генератора данного типа в течение 2 мин (120 с). Для этого должно быть соблюдено условие:

где А — постоянная величина для генератора данного типа.

Так, например, для турбогенератора с косвенным охлаждением типа ТВ (А = 20) Iс,з ? 0,45I ном для гидрогенераторов (А == 40) I с,з ? 0,6I ном.

Для того чтобы токовая защита обратной последовательности генератора не срабатывала при удаленных КЗ, когда защиты соседних элементов трансформаторов и линий не действуют, она должна быть согласована с этими защитами по чувствительности. При этом не должно нарушаться условие (9.14). Выдержка времени защиты выбирается точно так же, как и для максимальной токовой защиты с блокировкой по напряжению.

Токовое реле КАЗ, уставка срабатывания которого принимается равным (0,08—0,1) I ном, предназначено для сигнализации в случае возникновения несимметрии в первичной сети, сопровождающейся прохождением сравнительно небольшого тока обратной последовательности.

В схеме защиты на рис. 3.7 для действия при трехфазных КЗ предусмотрено одно токовое реле КА1, включенное на фазный ток, и одно реле минимального напряжения KV, подключенное на междуфазное напряжение. Уставки срабатывания этих реле выбираются так же, как и уставки реле максимальной токовой защиты с блокировкой по напряжению.

На турбогенераторах мощностью 60—100 МВт с непосредственным охлаждением обмоток применяется четырехступенчатая токовая защита обратной последовательности, схема которой показана на рис. 3.8. Защита выполняется с двумя фильтрами-реле тока обратной последовательности типа РТФ-7/1 (РТФ-7/2). Ранее реле этого типа выпускались заводом под маркой РТФ-2.

Рис. 3.8. Токовая защита обратной последовательности с реле типа РТФ 7 для турбогенераторов мощностью 60—100 МВт

Одно из устройств РТФ-7 применяется в заводском исполнении. Чувствительное реле этого устройства КА2 используется для сигнализации, а грубое KAl—для второй ступени защиты. Второе устройство РТФ-7 модифицируется. Для получения необходимых уставок срабатывания оно несколько загрубляется. С помощью чувствительного элемента второго устройства РТФ-7 выполняется третья ступень защиты КА5, а грубый элемент КА4 используется для вывода из действия токовой защиты нулевой последовательности, чтобы предотвратить ее излишнее срабатывание при внешнем КЗ. Для выполнения первой ступени защиты используется дополнительное токовое реле КАЗ (рис. 3.8) типа РТ-40/0,6, подключение которого к фильтру второго устройства РТФ-7 осуществляется через специальные выводы.

Каждая ступень токовой защиты обратной последовательности действует на свое реле времени, а для последней третьей ступени, чтобы обеспечить необходимую выдержку времени, предусмотрена установка двух последовательно действующих реле времени КТ4 и КТ5. Первая, наиболее грубая ступень защиты с одной и той же выдержкой времени действует на отключение АГП, выключателя генератора и на промежуточное реле, отключающее шиносоединительные и секционные выключатели. Вторая же и третья ступени действуют с двумя разными выдержками времени: с первой через проскальзывающие контакты КТ1.1 и КТ5.1 на отключение шиносоединительных и секционных выключателей, а со второй (контакты К.Т1.2, КТ5.2)—на отключение АГП и выключателя генератора.

Тип генератора, напряжение

I ступень

II ступень

III ступень

ТВФ-60-2; 6,3 KB

ТВФ-60-2; 10,5 кВ

ТВФ-100-2; 10,5 кВ

Как уже отмечалось выше, в схеме используется специальное токовое реле обратной последовательности КА4 для вывода из действия токовой защиты нулевой последовательности при внешних несимметричных КЗ. Это обусловлено следующими обстоятельствами. В зависимости от значения тока, проходящего при двойном замыкании на землю, повреждение будет отключаться либо продольной дифференциальной защитой генератора, либо грубым реле токовой защиты нулевой последовательности. Для того чтобы весь возможный диапазон токов повреждения был перекрыт и двойное замыкание на землю всегда отключалось быстродействующей защитой, ток срабатывания реле, выводящих из действия токовую защиту нулевой последовательности при внешних КЗ, необходимо выбирать грубее тока срабатывания продольной дифференциальной защиты. Для того чтобы точно и с необходимым запасом выполнить это условие, предусмотрено специальное токовое реле обратной последовательности КА 4

Читайте также:  Турбина с генератором света

Для реле токовой защиты обратной последовательности генераторов типа ТВФ, работающих на шины генераторного напряжения, рекомендуются уставки и, указанные в табл. 3.3.

Эти уставки выбраны на основании следующих соображений:

Ток срабатывания первой ступени принят по условию обеспечения необходимой чувствительности (kч,т == 1,2) при двухфазном КЗ на выводах защищаемого генератора, когда выключатель его отключен Выдержка времени первой ступени защиты определялась в соответствии с характеристикой, определяющей допустимую длительность прохождения тока обратной последовательности при двух фазном КЗ на выводах генератора.

Рис 3 9. Структурная схема фильтра-реле типа РТФ 6
/ — сигнал о перегрузке, // — сигнал о пуске органа с зависимой выдержкой времени, /// — отключение, IV — отключение с зависимой выдержкой времени.

Уставки срабатывания второй ступени защиты по току выбирались таким образом, чтобы обеспечивалась необходимая чувствительность защиты при несимметричном КЗ за резервируемым элементом, например за повышающим трансформатором, сохранялась селективность с защитами соседних элементов и удовлетворялись требования защиты генератора от тока обратной последовательности. Этим требованиям, как правило, удовлетворяют уставки, yказанные в табл. 3.3.

Ток срабатывания третьей ступени принимается равным 0,25Iном. В соответствии с тепловой характеристикой прохождение такого тока обратной последовательности через генераторы типов ТВФ-60 и ТВФ-100 допускается в течение 3 мин. Таким образом, в случае возникновения несимметричного режима с током обратной последовательности меньше уставки срабатывания третьей ступени защиты персонал будет иметь достаточно времени (3—5 мин) для того чтобы принять меры к устранению причины, вызвавшей несимметричный режим, или разгрузить и отключить генератор.

Выдержка времени второй ступени определяется по тепловой характеристике и определяет допустимое время прохождения тока обратной последовательности, равного току срабатывания первой ступени.

Аналогично выдержка времени третьей ступени определяется допустимой продолжительностью прохождения через генератор тока обратной последовательности, равного уставке срабатывания второй ступени. Определенная таким образом выдержка времени равна 40 с. Для уменьшения количества реле в схеме защиты эту выдержку времени можно понизить до 20 с, что можно осуществить с одним реле времени типа ЭВ-140.

Ток срабатывания токового реле КА2, действующего на сигнал, принимается равным (0,05—0,06) Iном. Ток срабатывания токового реле КА4, блокирующего токовую защиту нулевой последовательности при внешних КЗ, выбирается по условию согласования по чувствительности с уставкой реле продольной дифференциальной защиты генератора при двойном замыкании на землю согласно следующему выражению:

Рис. 3.10. Элементы фильтра-реле РТФ-6:
а — входное преобразующее устройство, Ш — упрощенная схема сигнального органа; в — схема цепей оперативного тока / — на сигнал о перегрузке, // — на отключение от первой отсечки; /// “. то же от второй отсечки, IV —то же от интегрального органа; г — схема цепей блока питания.

где I2С,З — ток срабатывания блокирующего токового реле обратной последовательности; Iс,з,диф — ток срабатывания продольной дифференциальной защиты, равный (0,5—0,6)Iном> I2Н,Н — ток обратной последовательности несимметричной нагрузки, принимается равным току срабатывания третьей ступени токовой защиты обратной последовательности 0,25 Iном; kн — коэффициент надежности, равный 1,2;

7.Особенности выполнения защиты на мощных генераторах.

На турбогенераторах мощностью 160 МВт и более токовая защита обратной последовательности выполняется с зависимой интегральной характеристикой выдержки времени, соответствующей тепловой характеристике генератора согласно (1.1). Наряду с этим на многих генераторах мощностью 160—300 МВт эксплуатируется ступенчатая, внедрявшаяся до начала выпуска защита с интегральной характеристикой

Структурная схема фильтра-реле типа РТФ-6М, с помощью которого осуществляется зависимая защита генераторов большой мощности, приведена на рис. 3.9. В состав комплекта РТФ-6М входят следующие элементы: фильтр тока обратной последовательности ФТОП, входное преобразующее устройство ВПУ, сигнальный орган СО, пусковой орган ПО, два органа токовой отсечки Отсечка 1 и Отсечка II, орган интегральной зависимой выдержки времени В, блок питания БП.

К ВПУ, схема которого показана на рис. 3 10, а, относятся:

согласующий разделительный трансформатор TL4, выпрямительные мосты VS1 и VS2, сглаживающие фильтры второй гармоники L1—С6, конденсатор С7, балластные резисторы R17 и R18, нелинейная цепочка VD4—R19. Нелинейная цепочка необходима для коррекции характеристики органа с зависимой выдержкой времени в области больших токов обратной последовательности. Входное преобразующее устройство имеет два выхода, на каждом из которых имеется выпрямленное и сглаженное напряжение, пропорциональное току обратной последовательности защищаемого объекта. С обмотки w 3 трансформатора TL4 напряжение поступает на сигнальный и пусковой органы и органы отсечки, с обмотки w 2 — на орган с зависимой характеристикой выдержки времени.

Органы защиты, срабатывающие без выдержки времени (СО, ПО, отсечки), имеют одинаковые схемы, отличающиеся лишь значениями некоторых сопротивлений. На рис. 9.10, б приведена упрощенная схема сигнального органа, представляющая собой четырехплечий мост ACDE, к точкам А и D которого подводится напряжение от блока питания (БП), а к точкам В и F — от делителя напряжения, с выхода ВПУ (от точек а—а). В диагональ моста ЕС включено магнитоэлектрическое реле KL1 типа М237/054, обмотка которого шунтирована успокоительным резистором R24. Реле M237 / 054, характеризуется следующими параметрами: I с,р=6—10 мкА; Rобм = 1400—2000 Ом; ток термической стойкости обмотки — 2 мА; допустимое напряжение на контактах — 75—125 В.

Сопротивления плеч моста подобраны таким образом, чтобы при отсутствии напряжения на выходе ВПУ по обмотке реле проходил ток в тормозном направлении. Значение тормозного тока регулируется с помощью резистора R26 в пределах 50—100 мкА, что обеспечивает надежный размыкающий момент на подвижной системе магнитоэлектрического реле. Потенциалы точек В и F подобраны таким образом, что при отсутствии напряжения от ВПУ или достаточно малом его значении диод VD5 заперт, и ток, проходящий через него, пренебрежимо мал. При увеличении напряжения, подводимого от ВПУ, диод VD5 начинает отпираться, a VD6 запираться. Ток в диагонали ЕС изменит направление, обусловливая срабатывание магнитоэлектрического реле KL1.

Магнитоэлектрическое реле каждого из органов действует на свое промежуточное реле типа РМУГ, подключенное к стабилизированному напряжению постоянного оперативного тока (рис. 3.10, в). Кремниевые стабилитроны VD1—VD3 поддерживают напряжение на уровне 100 В, обеспечивающем нормальную работу контактов магнитоэлектрических реле. Параллельно каждому контакту включен искрогасительный контур из последовательно соединенных конденсатора и резистора.

Рис. 3.11. Схема защиты гидрогенератора от повышения напряжения

На рис. 3.10, г приведена схема цепей блока питания. С помощью резистора R50 обеспечивается регулирование напряжения, подаваемого на органы, срабатывающие без выдержки времени.

Сопротивление срабатывания защиты выбирается по условию отстройки от максимальной нагрузки при минимальном эксплуатационном напряжении:

При использовании реле сопротивления с эллиптической характеристикой сопротивление срабатывания можно увеличить, что в ряде случаев целесообразно для улучшения дальнего резервирования.

Следует отметить, что рассматриваемая защита с реле сопротивления надежно срабатывает при внутренних КЗ в обмотках генератора.

8.Защита ротора от замыкания на корпус.

Защита от замыкания на землю в одной точке. Для периодического контроля за состоянием изоляции цепей возбуждения используется вольтметр, один зажим которого связан с землей, а второй поочередно подключается к полюсам ротора. Если изоляция ротора достаточно высока, замеры вольтметра в обоих случаях будут близки к нулю. При замыкании на землю в обмотке ротора вольтметр замерит значение напряжения каждого полюса относительно земли. При снижении уровня изоляции в какой-либо точке обмотки значения замеров напряжения будут различными в зависимости от места ухудшения изоляции и ее сопротивления. Для повышения точности определения сопротивления изоляции обмотки ротора относительно земли при измерениях используют вольтметр с высоким сопротивлением обмотки.

Рис. 3.12. Схема защиты гидрогенератора от замыкания на землю в одной точке цепи возбуждения:
а — цепи переменного напряжения; б -— цепи оперативного тока

На гидрогенераторах, турбогенераторах с водяным охлаждением обмотки ротора, а также на всех турбогенераторах мощностью 300 МВт и выше должна предусматриваться защита от замыканий на землю в одной точке цепи возбуждения. На гидрогенераторах эта защита должна действовать на отключение, а на турбогенераторах — на сигнал.

Схема защиты, которая может применяться на гидрогенераторах при емкости цепи возбуждения относительно земли не больше 0,5 мкФ, приведена на рис. 3.12. К цепи возбуждения через конденсатор С подключается вторичная обмотка промежуточного трансформатора TL, в цепь которого включено токовое реле К.А, имеющее специальные обмоточные данные. Второй конец обмотки токового реле заземляется через специальную щетку, имеющую электрический контакт с валом ротора. Питание схемы защиты осуществляется от шин собственных нужд через трансформатор TL, вторичное напряжение на зажимах которого составляет 60—100 В.

В нормальном режиме ток в реле КА не проходит, и оно держит разомкнутым свой контакт. В случае замыкания на землю в цепи возбуждения генератора создается контур для прохождения переменного тока через токовое реле, которое при этом срабатывает. Через замкнувшийся контакт реле КА плюс подается на обмотку реле времени КТ, которое сработав, заставляет подействовать промежуточное реле KL. После срабатывания реле KL самоблокируется и предотвращает длительное прохождение переменного тока через место замыкания на землю. Для деблокировки защиты и ввода ее в работу установлен ключ SAC.

Рис. 3.13. Схема защиты турбогенераторов с тиристорной и высокочастотной системами возбуждения от замыкания на землю в одной точке цепи возбуждения с реле КЗР-3:
а — принципиальная схема защиты; б — вспомогательное устройство ВУ-2

Читайте также:  Ваз 2113 генератор не дает зарядку

Конденсатор С емкостью 0,3 мкФ, включенный последовательно с реле КА, не допускает прохождения постоянного тока через место замыкания на землю. В случае, если при замыкании на землю в цепи возбуждения генератора конденсатор окажется пробитым, возникнет короткое замыкание. При этом защита отключится плавкими предохранителями Г1 и F2. На турбогенераторах с тиристорной и высокочастотной системами возбуждения применяется серийно выпускаемая промышленностью защита типа КЗР-3, выполняемая с наложением на цепь возбуждения переменного тока частотой 25 Гц. Основные элементы и цепи защиты показаны на принципиальной схеме (рис. 3.13). Источником наложенного тока является магнитный делитель частоты (МДЧ), питающийся переменным током 50 Гц, 220 В от сети собственных нужд. В МДЧ имеются две независимые вторичные обмотки для питания защиты переменным током 25 Гц: одна из них используется для наложения тока на цепь возбуждения генератора, а вторая — в схеме защиты.

Переменный ток 25 Гц подается на обмотку ротора через вспомогательное устройство ВУ2 (рис. 3.13, б), состоящее из частотных LC-фильтров (L1 и Cl, L2 и С2, L3 и С4, L3 и СЗ), предназначенных для предотвращения проникновения в защиту слагающих напряжения частотой 50—150—300 Гц и более из тиристорной или высокочастотной системы возбуждения. Конденсаторы С1 и С4, кроме того, отделяют цепи возбуждения от защиты, исключая намагничивание ферромагнитных сердечников в комплекте защиты постоянным током от возбудителя генератора. Резистор R1 в ВУ2 ограничивает наложенный ток при металлическом замыкании на землю в одной точке. Разрядник FV защищает измерительные цепи защиты при возникновении перенапряжений на входе ВУ2.

Наложенный ток проходит через сопротивление изоляции и емкостное сопротивление на землю цепи возбуждения и состоит из двух составляющих — активного и емкостного тока. Для того чтобы защита реагировала на изменение сопротивления изоляции, на ее измерительный орган должна подаваться только активная составляющая наложенного тока. Для выделения этой составляющей в устройстве КЗР-3 применена симметричная кольцевая фазочувст-вительная схема. На нее подается наложенный ток через трансформатор тока ТА и напряжение частотой 25 Гц от второй обмотки МДЧ.

Фазочувствительная схема состоит из диодов VD2—VD5 и балластных резисторов R6—R9 (рис. 3.13, а). Нагрузка фазочувствитель-ной схемы подключена к средним точкам делителей напряжения R2—R3 и R4—R5.

Напряжение, подаваемое на фазочувствительную схему от МДЧ, значительно больше напряжения вторичной обмотки ТА, нагруженной делителем напряжения. Поэтому напряжение от МДЧ является управляющим, т. е. оно только открывает и закрывает диоды, а ток в цепи нагрузки фазочувствительной схемы создается меньшим (управляемым) напряжением и в течение каждого полупериода проходит через оба открытых диода. При таком режиме среднее значение напряжения на выходе фазочувствительной схемы UВЫХ » I cosj , где j — угол между управляемым напряжением и создаваемым им током. В защите КЗР-3 — это угол между наложенным током и создающим его напряжением частотой 25 Гц. Таким образом в защиту подается только активная составляющая наложенного тока.

Рис. 3.14. Распределение напряжения по обмотке ротора при замыканиях на землю:
а — в одной точке; б—в двух точках.

Напряжение с выхода фазочувствительнои схемы сравнивается с эталонным стабилизированным напряжением от делителя напряжения, состоящего из резисторов R12, R14, R16, R18, используемых при четырех возможных уставках защиты, и резистора R22. Реагирующим органом является чувствительное магнитоэлектрическое реле КА, срабатывающее при возникновении замыкания на землю в обмотке ротора. Благодаря сравнению напряжений в реагирующем органе обеспечивается его четкое срабатывание и высокий коэффициент возврата. Предусмотрены две уставки срабатывания защиты: 5 кОм — подключен резистор R16, 2,5 кОм — резистор R18. Резисторы R12 и R14 предназначены для использования при работе генератора на электромашинном возбуждении. При работе генератора на электромашинном возбуждении защита может быть включена без ВУ2. Однако во избежание усложнения защиты и ее эксплуатации исключение ВУ2 при переходе на резервное электромашинное возбуждение не предусматривается.

Конденсатор СЗ сглаживает ток в реле КА, а резистор R21 служит для создания режима -критического успокоения рамки магнитоэлектрического реле, при котором сближение контактов во время срабатывания реле носит апериодический характер.

Контакт реле КА, зашунтированный искрогасительным контуром (С4, R23), замыкает цепь промежуточного реле KL1, запускающего реле времени КТ, действующего на сигнал через выходное реле KL2. Напряжение, подаваемое да .цепь обмотки реле KL1, стабилизировано на уровне 66 В с помощью балластного резистора RS4 и стабилитронов VD6 и VD7.

Основным недостатком защиты КЗР-3 является зависимость ее чувствительности от емкости на землю цепей возбуждения. Применение защиты рекомендуется при емкости не более 2 мкФ, при которой погрешность в токе срабатывания не превышает 30 %. При работе с основным возбудителем это условие обычно выполняется. При переходе же на резервное возбуждение значение емкости может существенно увеличиваться, достигая 5 мкФ. При этом защита КЗР-3 неприменима.

Защита замыканий на землю в двух точках. Защита от замыканий на землю в двух точках цепи возбуждения устанавливается только на турбогенераторах. На станции обычно имеется один общий комплект защиты, который и подключается к генератору, имеющему замыкание в одной точке цепи возбуждения. Схема защиты состоит из потенциометра, присоединяемого к кольцам ротора, и токового реле, которое включается в диагональ моста, образуемого обмоткой возбуждения и потенциометром.

При замыкании на землю в одной точке ротора, например в точке 1, напряжение относительно земли распределится по обмотке возбуждения и потенциометру, как показано -на рис. 3.14, а. Перемещая движок потенциометра, находят точку, в которой напряжение относительно земли равно нулю. При этом через реле не будет проходить ток, так как оба зажима подключены к точкам с одинаковым потенциалом. В случае возникновения второго замыкания на землю, например в точке 2, распределение напряжения на обмотке возбуждения и потенциометре изменится и будет иметь вид, аналогичный изображенному на рис. 3.14, б. Теперь точка на потенциометре, к которой подключен зажим реле, имеет относительно .земли потенциал D U. Под действием напряжения D U через реле пройдет тек и оно сработает. Схема защиты ротора от двойных замыканий на землю типа КЗР-2 приведена на .рис. 3.15.

Рис 3.15. Схема защиты генератора от замыканий на землю в двух точках цепи возбуждения:
а — цепи возбуждения; б — цепи оперативного тока.

Потенциометр RR1 с последовательно включенным реостатом RR2, который служит для более плавной регулировки, подключается зажимами 1 и 2 к полюсам обмотки возбуждения после возникновения в ней замыкания на землю в одной точке. Зажим 3 подключается к валу генератора через специальную щетку. Этим исключается возможность ложного срабатывания защиты от наведенных токов, проходящих в контуре заземления электростанции.

Защита подключается к обмотке ротора без предохранителей, так как сгорание одного из них повлечет за собой ее неправильную работу. По той же причине защита должна подключаться к обмотке ротора через двухполюсный рубильник. После подключения к обмотке ротора движки потенциометра RR1 и добавочного сопротивления RR2 устанавливаются в положение, при котором показания вольтметра PV будут минимальными (не более 0,5 В). Переключатель SAC e добавочными сопротивлениями позволяет переключать пределы измерения вольтметра (300, 30, 3 В), что обеспечивает более точную регулировку и вместе с тем предохраняет вольтметр от перегрузок при грубой настройке. Настройка защиты производится при отключенной накладке SX. По окончании настройки накладка SX включается и защита вводится в работу.

В качестве чувствительных реле, реагирующих на нарушение балансировки моста и тем самым на появление второго замыкания на землю, в схеме защиты используются поляризованные реле KL1 и K.L2. Установка двух поляризованных реле необходима, так как каждое из них срабатывает лишь тогда, когда ток входит в зажим, обозначенный точкой. Направление же тока в диагонали моста, а следовательно, и в реле зависит от местоположения второго замыкания на землю относительно первого. Обмотки реле включены так, что работа защиты при возникновении второго замыкания на землю обеспечивается независимо от направления тока в диагонали моста.

Из-за неравномерности воздушного зазора генератора в обмотке ротора циркулирует переменный ток, который может проходить по обмоткам реле K.L1 и K.L2. Возникающая при этом вибрация контактов снижает надежность работы реле и может привести к отказу защиты. Для снижения влияния переменного тока на работу реле в схему защиты введены дроссель L и конденсатор С. Дроссель, представляющий собой большое индуктивное сопротивление (70 кОм при 50 Гц), имеет сравнительно малое омическое сопротивление, не более 160 Ом. Емкость конденсатора и индуктивность дросселя подобраны так, чтобы при коэффициентах возврата реле K.L1 и K.L2 0,3—0,5 отсутствовала вибрация реле после срабатывания, если в их обмотках проходит постоянный ток, равный току срабатывания, а на зажимы 3 и / подано переменное напряжение 500 В, 50 Гц

Защита работает с выдержкой времени, которая устанавливается на реле времени КТ. После срабатывания выходное реле защиты K.L3 самоудерживается и подает импульс на сигнал или на отключение генератора.

На турбогенераторах с косвенным охлаждением обмотки ротора защита от второго замыкания на землю, как правило, включается с действием на сигнал. На мощных турбогенераторах с непосредственным охлаждением обмотки ротора защита устанавливается с действием на отключение с выдержкой времени 1—2 с.

Недостатком рассматриваемой защиты является наличие у нее “мертвой зоны”, так как чем ближе второе замыкание на землю (точка 2 на рис. 3.14, б) будет расположено к точке 1, тем меньше будет ток в реле. Если первое замыкание произошло на кольцах ротора, защита вообще не будет действовать независимо от места второго замыкания на землю. Защиту нельзя использовать, если первое замыкание на землю возникнет в цепи возбуждения возбудителя, так как в этом случае она может неправильно подействовать при изменении положения реостата возбуждения.

Источник