Меню

Устройство генераторов с самовозбуждением



Что такое самовозбуждение в генераторе переменного тока?

1. Железный сердечник ротора обладает некоторым остаточным магнетизмом, но его обычно недостаточно, чтобы в статарной обмотке начал генерироваться ток. Однако, даже если пропустить через обмотку возбуждения генератора ток сигнальной лампочки разряда аккумулятора мощностью всего лишь 2.2 Вт, то этого окажется достаточно для возбуждения требуемого магнитного поля.

2. Эта лампочка также сигнализирует о том, что на аккумулятор не поступает напряжение подзарядки. Она загорается при включении зажигания и горит до тех пор, пока не начнет вращаться генератор. При этом с обмоток статора через диоды пойдет ток на обмотку возбуждения ротора, разность напряжений между контактами лампочки пропадет и лампочка погаснет. Это произойдет в предположении, что на обмотку возбуждения подается со статора напряжение, примерно равное напряжению аккумулятора.

На рис. 3.15 показана принципиальная схема генератора с самовозбуждением. Она отличается по внешнему виду от схемы с внешним возбуждением наличием в ней девяти диодов.

3. В схемах автомобильного электрооборудования обычно параллельно сигнальной лампочке устанавливают еще и резистор с постоянным сопротивлением, так что ток не обмотку возбуждения при пуске двигателя будет поступать всегда, даже в случае, если лампочка перегорела.

4. При работе генератора весь необходимый ток возбуждения снимается с его статарной обмотки отсюда и происходит термин “самовозбуждение”. Ток аккумулятора используется только для того, чтобы началась генерация.

Рис. 3.15. Генератор переменного тока с самовозбуждением.

Источник

Генератор с самовозбуждением и размагничивающей обмоткой

Главное отличие этого типа генераторов в том, что намагничивающая обмотка возбуждения питается не от постороннего источника, а от самого генератора. Поэтому они называются генераторами с самовозбуждением.

Принципиальная электрическая схема и устройство магнитной системы четырех полюсного генератора с самовозбуждением.

В коллекторных генераторах, кроме основных полюсов и обмоток, есть ещё 2 дополнительных полюса, на которых размещается по витку дополнительной последовательной обмотки. Это необходимо для компенсации магнитного потока реакции якоря и сохранения положения электрической нейтрали машины при изменении нагрузки.

Для нормальной работы генератора с самовозбуждением необходимо, чтобы напряжение, подаваемое на намагничивающую обмотку, не изменялось в процессе сварки, т.е. не зависело от режима сварки. С этой целью в генераторе установлена третья дополнительная щетка z, которая располагается между двумя основными щетками a и b. При анализе работы данного генератора необходимо учитывать магнитный поток Фя, создаваемый сварочным током, протекающим по виткам якорной обмотки, так называемый поток реакции якоря.

Картина распределения магнитных потоков под полюсом полярности N четырехполюсного генератора

Из рисунка видно, что под одной половиной полюсов силовые линии поля якоря усиливают намагничивающий поток Фн. а под другой — ослабляют его. В целом подмагничивающее действие потока реакции якоря компенсируется его размагничивающим действием. Поэтому при анализе работы генераторов с независимым возбуждением влияние потока реакции якоря не учитывалось.

В генераторах с самовозбуждением параметры обмотки якоря и размагничивающей обмотки подобраны так, что под одной половиной полюсов (между щетками b—z) магнитный поток размагничивающей обмотки компенсируется потоком реакции якоря. В результате напряжение на щетках b-z будет определяться только половиной магнитного потока намагничивающей обмотки.

Таким образом, напряжение, питающее намагничивающую обмотку, оказывается независящим от сварочного тока. Падающая же характеристика генератора обеспечивается за счет размагничивающего действия размагничивающей обмотки, проявляющегося под второй половиной полюсов.

Это позволяет заключить, что регулировка режима в коллекторных генераторах с самовозбуждением такая же. как и в генераторах с независимым возбуждением.

Особенность генераторов с самовозбуждением состоит в том, что их запуск возможен только при вращении якоря, в одном направлении, указанном стрелкой на торцевой крышке статора.

Это связано с тем, что первоначальное возбуждение генератора при его запуске происходит благодаря остаточному намагничиванию полюсов. При вращении якоря в противоположную сторону в обмотке возбуждения потечет ток обратного направления, который своим нарастающим магнитным полем в какой-то момент времени компенсирует остаточное намагничивание полюсов, т.е. суммарный магнитный поток под полюсами станет равным нулю. В этом случае для возбуждения генератора необходимо намагничивающую обмотку временно подсоединить к независимому источнику постоянного тока.

Агрегат АДД-303 с коллекторным генератором

ВЕНТИЛЬНЫЕ СВАРОЧНЫЕ ГЕНЕРАТОРЫ

Появились в середине 70-х годов 20 века после освоения производства силовых кремниевых вентилей. В этих генераторах функцию выпрямления тока вместо коллектора выполняет полупроводниковый выпрямитель, на который подается переменное напряжение генератора.

В сварочных агрегатах применяются генераторы три типа конструкции генераторов переменного тока: индукторный, синхронный и асинхронный

Конструкции генераторов переменного тока:

а — индукторного, б — синхронного, в — асинхронного

В России сварочные агрегаты выпускаются с индукторными генераторами с самовозбуждением, независимым возбуждением и со смешанным возбуждением.

Схема вентильного генератора с самовозбуждением

Схемы однофазного и трехфазного вентильных генераторов с независимым возбуждением

Конструктивная схема и связь параметров индукторного генератора

В индукторном генераторе неподвижная обмотка возбуждения питается постоянным током, но создаваемый ею магнитный поток имеет переменный характер. Он максимален при совпадении зубцов ротора и статора, когда магнитное сопротивление на пути потока минимально, и минимален при совпадении впадин ротора и статора.

Следовательно. ЭДС, наводимая этим потоком, тоже переменная. Три рабочие обмотки расположены на статоре со сдвигом на 120°, поэтому на выходе генератора образуется трехфазное переменное напряжение. Падающая характеристика генератора получается за счет большого индуктивного сопротивления самого генератора. Реостат в цепи возбуждения служит для плавной регулировки сварочного тока.

Читайте также:  Ремонт дизель генератора в ростове

Отсутствие скользящих контактов (между щетками и коллектором) делает данный генератор более надежным в эксплуатации. Кроме того, у него более высокий КПД, меньшие масса и габариты, чем у коллекторного генератора. Значительно можно улучшить и динамические характеристики.

Принципиальная электрическая схема вентильного генератора типа ГД-312 с самовозбуждением

ВСХ генератора ГД-312

Для обеспечения работы на холостом ходу питание обмотки возбуждения осуществляется от трансформатора напряжения, а для питания ее в режиме короткого замыкания – от трансформатора тока. В режиме нагрузки – сварки – на обмотку возбуждения подается смешанный сигнал управления пропорциональный части выходного напряжения и пропорциональный току.

Вентильные генераторы выпускаются марки ГД-312 и применяются для ручной сварки металлов в составе агрегатов типа АДБ

Схемы соединения обмоток трехфазного индукторного генератора

Вентильный генератор ГД-4006

Принципиальная схема генератора ГД-4006

ВСХ генератора ГД-4006

В России выпускают несколько конструкций многопостовых агрегатов с количеством постов от 2х до 4х.

На рынке представлены универсальные агрегаты для нескольких способов сварки или сварки и плазменной резки. В частности агрегат АДДУ-4001ПР

Устройство агрегата АДДУ-4001ПР

Формирование исскуственных ВСХ агрегата АДДУ-4001ПР обеспечивается тиристорным силовым блоком с микропроцессорным управлением.

Более широкие технологические возможности обеспечивает применение в агрегатах инверторных силовых блоков, как например в агрегате Vantage500.

Инверторные источники питания.

Инвертирование в преобразовательной технике – это преобразование постоянного напряжения в переменное.

Инверторы сварочных источников питания выполняются на силовых тиристорах и транзисторах. Тиристорные инверторы проигрывают транзисторным по максимальной частоте преобразования (на порядок) и соответственно по массогабаритным показателям. Поэтому в производстве сварочных ИП они в настоящее время почти полностью вытеснены транзисторными инверторами.

Рассмотрим одну из широко применяемых схем транзисторного инвертирования.

Выпрямитель V1 преобразует напряжение сети (

380В, 50Гц) в постоянное, неравномерность которого сглаживается фильтром L1С1. Инвертор на транзисторах VT1-VT2 преобразует постоянное напряжение в переменное высокочастотное (

50 кГц). Далее напряжение (

380 В) понижается трансформатором Т до сварочного ( 80 В), выпрямляется выпрямителем V2 и сглаживается фильтром L2C2. Поскольку трансформируется переменный ток большой частоты, то трансформатор изготавливается не с железным, а с ферритовым сердечником, что снижает его вес примерно в 10 раз. Поскольку частота трансформируемого тока большая, то сокращается длительность переходных процессов с n*10 -2 с до 10 -3 с и менее.

В настоящее время основную часть инверторного оборудования для сварочного производства составляют ИП с высокочастотными трансформаторами, поскольку условия электробезопасности при ручной сварке и сварке шланговыми полуавтоматами, а также при плазменной резке требуют гальванической развязки вторичной цепи от силовой сети.

Регулировка режима (получение падающей вольтамперной характеристики и регулировка вторичного напряжения на жёсткой характеристике) как правило осуществляется путём изменения частоты.

Осциллограммы при регулировании напряжения изменением амплитуды (а), частоты (б) и ширины (в) импульсов

Для получения падающей характеристики вводится обратная связь по току: с его увеличением автоматически снижается частота, что влечет уменьшение выходного напряжения. Для стабилизации выходного напряжения на жестких характеристиках вводится обратная связь по напряжению.

Внешние характеристики выпрямителей с инвертором

В 80-х годах и до середины 90-х годов инверторные выпрямители выпускались небольшой мощности (до 160 А), для работы на монтаже и для бытовых нужд. В середине 90-х появилось новое поколение так называемых полевых транзисторов, способных выдерживать большие токи. Это позволило приступить к выпуску промышленных инверторов на токи 300-500 А.

Современные переключающие приборы: МОП-транзистор (а); биполярный транзистор с изолированным затвором (б); транзисторно-диодный модуль — чоппер (в); силовой модуль с оптимизированным управлением и комплексной внутренней защитой (г)

В сварочных ИП с силовыми транзисторами используется несколько схем инвертирования.

Однотактный преобразователь с прямым включением диода

Однотактный преобразователь с обратным включением диода

Двухтактный мостовой преобразователь

Двухтактный полумостовой преобразователь

Резонансный двухтактный мостовой преобразователь

Реальные силовые схемы инверторных ИП могут существенно отличаться от типовых.

Источник

Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Читайте также:  Можно ли из асинхронного двигателя сделать генератор то как

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, w t – угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Читайте также:  Щеточки генератора ваз 2110

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Источник