Меню

Тип номинальных параметров генератора



Тип номинальных параметров генератора

К основным параметрам синхронных генераторов относят: номинальные значения напряжения, силы тока нагрузки, мощности, силы тока возбуждения, коэффициента мощности, частоты.

1. Номинальное напряжение генератора соответствует одному из значений шкалы 230, 400, 690 В, 6,3 и 10,5 кВ. Следовательно, напряжение на зажимах генераторов принято на 5% выше стандартных напряжений токоприемников. Генераторы большей мощности изготавливают на напряжение от 3,15 до 24 кВ.

2. Номинальная сила тока нагрузки — это сила тока, на которуюрасчитан тепловой режим генератора. Допускаются кратковременные перегрузки в аварийных режимах: на 10% продолжительностью 60 мин, на 15% — 15 мин, на 20% — 6 мин, на 25% — 5 мин, на 50% — 2 мин, на 100% — 1 мин. Более длительная перегрузка опасна для изоляции обмоток. Это относится и к току возбуждения.

3. Номинальная мощность — это длительно развиваемая мощность при номинальных значениях напряжения, силы тока и коэффициента мощности при номинальной нагрузке и температуре + 35 °С охлаждающего воздуха (входящего в генератор). Длительно допустимая температура нагрева обмоток указана в инструкции по эксплуатации генераторов. Она зависит от класса изоляции обмоток и в большинстве случаев должна превышать Ю0. 120°С для статорных обмоток и 105. 145°С для роторных.

4. Номинальный коэффициент мощности обычно равен 0,8. При боте генератора с меньшим коэффициентом мощности активная мощость его снижается, не полно используется мощность первичного двигателя.

5. Номинальная частота тока в нашей стране принята равной 50 Гц. В ряде установок применяют генераторы повышенной частоты (150, 200, 00 Гц и др.).

6. Заводы-изготовители прилагают к генераторам характеристики холостого хода и короткого замыкания. Эти характеристики необходив процессе проектирования и эксплуатации электростанций, в частости при решении вопросов об устойчивости параллельной работы синхронных генераторов, регулировании напряжения и компаундироии, а также при расчетах токов короткого замыкания в целях выбора необходимой релейной зашиты и т. д.

Источник

Номинальные параметры и условия работы генераторов

Синхронные генераторы

Общие сведения

На современных электростанциях применяют синхронные генераторы трехфазного переменного тока. Первичными двигателями для них являются паровые турбины или гидротурбины. В первом случае это турбогенератор, а во втором – гидрогенератор.

Паровые турбины, являющиеся первичными двигателями, наиболее экономичны при высоких скоростях, но здесь конструкторов ограничивает строгая связь для синхронных генераторов:

где f – частота сети, р – число пар полюсов генератора. При принятой стандартной частоте 50 Гц и наименьшем возможном числе пар полюсов р = 1 наибольшее число оборотов определяется так:

Большинство турбогенераторов быстроходные, т.е. имеют максимальное число оборотов 3000. Если бы наши электроустановки были рассчитаны на частоту 60 Гц, то номинальное число оборотов соответственно увеличилось бы до 3600.

Генераторы небольших мощностей, соединенные с дизелями и другими поршневыми машинами, изготовляются на 750 – 1500 об/мин. Большие скорости вращения ротора отражаются на его конструкции – это цилиндрическая, цельнокованая поковка из специальной легированной стали. Вдоль поверхности ротора фрезеруют радиальные пазы, в которые укладывается обмотка возбуждения. Пазы закрываются клиньями, а в лобовой части обмотка укрепляется бандажными кольцами. Ротор турбогенератора гладкий, неявнополюсный, диаметром 1,1 – 1,2 м, длиной 6 – 6,5 м. Сердечник статора шихтуется из листов электротехнической стали в пакеты, между которыми образуются вентиляционные каналы. В пазы статора укладывается обмотка, закрепляемая деревянными или текстолитовыми клиньями, а лобовые части тщательно прикрепляются к конструктивным частям статора. Корпус статора изготовляется сварным и с торцов закрывается щитами с герметическими уплотнениями.

Для АЭС ввиду низких параметров пара целесообразно применять четырехполюсные генераторы с частотой вращения 1500 об/мин.

Рис. 2.1. Гидрогенератор подвесного исполнения (353 MBА, 200 об/мин):

1 – корпус статора; 2 – сердечник статора; 3 – обмотка статора; 4 – фундаментная плита; 5 – кольцо тормозное; 6 – полюс; 7 – обод ротора; 8 – остов ротора; Р – вал; 10 – тормоз-домкрат; 11 – крестовина нижняя; 12 – нижний направляющий подшипник; 13 – верхний направляющий подшипник; 14 – крестовина верхняя; 15 – сегмент подпятника; 16 – диск подпятника; 11 – втулка подпятника

Читайте также:  Воздушный фильтр для генератора sdmo

Гидрогенераторы большой и средней мощности выполняются с вертикальным валом, в верхней части которого располагается генератор, а в нижней – гидротурбина. Мощность гидротурбины и ее скорость определяются величиной напора и расхода воды. Гидрогенераторы при больших мощностях изготовляются на 60–125 об/мин, при средних и малых – на 125 – 750 об/мин, т.е. они являются тихоходными машинами.

Вертикальные гидрогенераторы подвесного типа (рис. 2.1) имеют один подпятник 15, 16, 17, расположенный в верхней крестовине, к которой «подвешен» ротор генератора 7, 8и колесо турбины. Нижний 12 и верхний 13 направляющие подшипники обеспечивают вертикальное положение вала.

В гидрогенераторах зонтичного типа подпятник находится под ротором, в нижней крестовине, что позволяет снизить высоту всего агрегата, а следовательно, и здания ГЭС. Такое исполнение применяется для мощных агрегатов.

Статор гидрогенератора выполняется принципиально так же, как у турбогенератора. Ротор тихоходных гидроагрегатов имеет большое количество полюсов. Так, при числе оборотов 200

а при n=68,2 об/мин р=44пары, т.е. на ободе ротора надо разместить 88 полюсов. Это приводит к необходимости увеличить диаметр ротора до 16 – 22 м. Полюсы ротора с обмоткой возбуждения крепятся на ободе ротора 7. Кроме основной обмотки возбуждения, полюсы снабжены успокоительной обмоткой из медных стержней, уложенных в пазах полюса у периферии.

Находят применение капсульные гидрогенераторы с горизонтальным валом, заключенные в водонепроницаемую оболочку, которая обтекается потоком воды, приводящим в движение колесо гидротурбины.

Номинальные параметры и условия работы генераторов

Номинальный (нормальный) режим работы – это длительно допустимый режим с параметрами, указанными в паспорте генератора.

Номинальное напряжение – это междуфазное напряжение обмотки статора в номинальном режиме. Согласно ГОСТ 533–85 установлена следующая шкала стандартных напряжений: 3,15; 6,3; 10,5; (13,8); (15,75); (18); 20 и 24 кВ.

Допускается работа генератора с номинальной мощностью при отклонении напряжения ±5%. Длительно допустимое в эксплуатации напряжение не должно превышать 110% номинального, но при этом ток ротора не должен превышать номинального значения.

Номинальная активная мощность генератора, МВт,

полная мощность, MB А,

где Uном, Iном номинальные напряжение и ток; cosj – номинальный коэффициент мощности.

Согласно ГОСТ 533–85Е принята шкала номинальных мощностей турбогенераторов: 2,5; 4; 6; 12; 32; 63; 110; 160; 220; 320; 500; 800; 1000; 1200; 1600; 2000 МВт.

Шкала номинальных мощностей крупных гидрогенераторов нестандартизована.

Номинальный cos j принят равным: 0,8 – для генераторов до 100 МВт; 0,85 – для турбогенераторов до 500 МВт и гидрогенераторов до 300 МВт; 0,9 – для более мощных генераторов.

Номинальной мощности генератора соответствует определенная температура охлаждающего воздуха, водорода или воды и длительно допустимая температура нагрева обмоток статора и ротора, а также активной стали магнитопровода.

Допустимый нагрев частей генератора зависит от теплостойкости применяемых изоляционных материалов (табл. 2.1).

Допустимые температуры нагрева турбогенераторов, °С

Часть генератора Класс изоляции
В F Н
Обмотка статора и активная сталь
Обмотка ротора

В настоящее время ОАО «Электросила» внедряет изоляцию «Монолит-2» для обмоток статора с изолировкой стержней обмотки сухими стеклослюдонитовыми лентами с последующей вакуумно-нагнетательной пропиткой и запечкой обмотки, уложенной в пазы статора. Такая изоляция позволяет увеличить единичную мощность турбогенераторов и их технические характеристики.

Изолирующие материалы в процессе эксплуатации подвергаются старению итеряют свои изолирующие свойства, поэтому систематические перегрузки генераторов недопустимы.Однако в аварийных условиях допускается кратковременная перегрузка по току статора и ротора [1.13], приведенная в табл. 2.2 и 2.3.

Читайте также:  Диодный мост генератора ваз 2114 элтра

Источник

III.1.2. Номинальные параметры синхронного генератора

К ним относятся:

а) номинальная частота вращения nн об/мин;

б) номинальное напряжение UH, кВ – линейное напряжение обмотки статора в номинальном режиме. Эти напряжения согласованы в ГОСТе с напряжением электрических сетей и образуют следующий ряд (см. табл. III.1.).

Схемы ГРУ и блочные

Примечание: напряжения в скобках относятся к выпущенным ранее турбогенераторам и не рекомендуются последними ГОСТами;

в) номинальный ток статора IH ,кА – это значение тока обмотки статора, при котором допускается длительная, нормальная работа генератора при номинальных параметрах системы охлаждения (температуре, давлении и расходе охлаждающей среды) и номинальных значениях мощности и напряжения;

г) номинальный коэффициент мощности , ().– угол между напряжением и током обмотки статора;

д) номинальная активная мощность РН, МВт. . Номинальные активные мощности турбогенераторов установлены ГОСТом (табл.III.2.);

Схема с ГРУ или блочная

е) номинальная полная мощность генератора SН (МВА);

ж) номинальный ток ротора (ток возбуждения) , А;

з) номинальное напряжение ротора , В;

и) КПД h, %. У современных турбогенераторов оно составляет 98,6-98,8 %

III.1.3. Системы охлаждения генераторов

Во время работы синхронного генератора его обмотки и активная сталь нагреваются. Предельный нагрев генератора лимитируется изоляцией обмотки статора или ротора, т.к. под воздействием тепла происходит ухудшение её изоляционных свойств и понижение механической прочности и эластичности, т.е. изоляция постепенно стареет. Чем выше температура нагрева изоляции, тем быстрее она изнашивается и тем меньше срок ее службы. Изоляция должна работать при такой температуре, при длительном воздействии которой она сохранит свои изоляционные и механические свойства в течение времени, сравнимого со сроком службы генератора. Эта температура и будет характеризовать нагревостойкость изоляции.

По нагревостойкости изоляционные материалы делятся на 7 классов (см. табл. III.3).

Допустимая температура, С 0

Материалы, применяемые для изоляции обмоток турбогенераторов и гидрогенераторов относятся к классу, B,F и H.

б) Классификация систем охлаждения.

Классификация представлена на рис. III.2.

Рис. III.2. Классификация систем охлаждения турбогенераторов: ОС – обмотка статора; ОР – обмотка ротора

в) Типы и характеристика охлаждающих сред

Турбогенераторы выполняются с воздушным, водородным, водородно-водяным и водомасляным охлаждением.

В качестве охлаждающей среды применяют:

газы (воздух, водород);

жидкости (дистиллированная вода, трансформаторное масло).

К свойствам охлаждающей среды относятся: 1) теплоотводящая способность; 2) затраты энергии на создание ее циркуляции; 3) пожароопасность; 4) степень ее влияния на изоляцию (возможность окисления изоляции при взаимодействии с охлаждающей средой).

Сравнительные теплоотводящие свойства сред приведены в таблице III.4. Здесь же указано их влияние на изоляцию и на пожароопасность генератора.

Физ. свойства в долях показателей воздуха

Степень влияния на изоляцию

не поддерживает горение

не окисляет изоляцию

очень слабо окисляет изоляцию

не поддерживает горение

не окисляет изоляцию

Наибольшей теплоотводящей способностью обладают жидкости (вода и масло), хотя затраты энергии на создание их циркуляции больше, чем для воздуха и водорода, которые являются менее плотными.

Пожароопасность определяется свойством охлаждающей среды поддерживать горение внутри генератора. Если охлаждающая среда поддерживает горение, то необходима установка системы пожаротушения внутри генератора.

Степень влияния на изоляцию и пожаробезопасность зависят от наличия кислорода в охлаждающей среде.

Следует отметить, что у машин с водородным охлаждением должна быть обеспечена высокая газоплотность корпуса масляными уплотнениями в целях исключения попадания воздуха внутрь генератора и образования взрывоопасной гремучей смеси, которая получается при определенных соотношениях водорода и кислорода.

г) Отличие косвенной (КСО) от непосредственной системы охлаждения (НСО)

При КСО охлаждающая среда (воздух или водород) циркулирует в зазоре между ротором и статором, а также в вентиляционных каналах сердечника статора. Поэтому тепло, выделяемое в проводниках обмотки статора и обмотки ротора, поглощается охлаждающим газом лишь после того, как оно пройдет либо через пазовую изоляцию (Q1) и сталь ротора или статора (Q2), либо через пазовую изоляцию (Q3) и пазовый клин ротора или статора (Q4) (см. рис. III.3.а). Говорят, что охлаждающая среда соприкасается с медью косвенным путем.

Читайте также:  Как найти максимальное значение силы тока в обмотке генератора по графику

При НСО охлаждающая среда непосредственно соприкасается с медью обмоток, благодаря чему основная часть тепла, выделяемого в меди (Qг) отводится непосредственно к охлаждающей среде, минуя изоляцию, сталь и клин (см. рис. III.3.б)

Следовательно, при НСО теплоотводящие свойства среды могут быть использованы более эффективно, чем при КСО.

Рис. III.3. Отвод тепла охлаждающей средой от обмоток при КСО (а) и НСО (б): 1, 7 – элементарные проводники обмоток статора и ротора; 3, 6 – сталь статора и ротора; 4, 9 – пазовый клин; 2, 8 – пазовая изоляция обмоток статора и ротора; 5 – воздушный зазор; 10 – направление движения охлаждающей среды

д) Отличие проточной воздушной системы охлаждения от замкнутой

При проточной СО воздух (охлаждающая среда), пройдя очистительные фильтры, поступает в закрытую машину, охлаждает ее и затем выбрасывается наружу (см. рис. III.4.а). Такая СО применяется только для генераторов небольшой мощности (до 3 МВт включительно), т.к. с воздухом, несмотря на наличие фильтров, в машину попадает пыль.

Для более крупных генераторов, требующих большого количества воздуха, применяют замкнутую вентиляцию (замкнутую СО), при которой в машине циркулирует одно и то же количество воздуха. Нагретый воздух охлаждается в охладителе и снова поступает к активным частям машины под воздействием вентилятора (рис. III.4.б). Отсутствие притока воздуха извне облегчает ликвидацию пожара в машине.

Рис. III.4. Проточная (а) и замкнутая (б) системы охлаждения: Г – генератор; В – вентилятор; Ф – фильтр; О – охладитель.

е) Типы замкнутых систем охлаждения

Воздушное косвенное охлаждение применяется для генераторов с номинальной активной мощностью 6 и 12 МВт. Буквенного кода не имеет.

Водородное косвенное охлаждение применяется для генераторов с номинальной активной мощностью 32 МВт. Обозначается буквой В – водород.

Водородное смешанное охлаждение применяется для генераторов с номинальной активной мощностью 63 и 100 МВт. Здесь обмотка статора имеет косвенное, а обмотка ротора и сердечник статора – непосредственное водородное охлаждение. Буквенный код ВФ (В – водород; Ф – форсированное охладение).

Водяное непосредственное охлаждение применяется для генераторов с номинальной активной мощностью 63 и 800 МВт. Здесь обмотка статора, обмотка ротора и сердечник статора охлаждаются непосредственно водой. Буквенный код 3В (3В – три воды).

Водомаслянное непосредственной охлаждение применяется для генераторов с номинальной активной мощностью 300 и 500 МВт Здесь сердечник и обмотка статора непосредственно охлаждаются маслом, а обмотка ротора – непосредственно водой. Буквенный код ВМ (В – вода; М – масло).

Водородное непосредственное охлаждение применяется только для турбогенераторов типа ТГВ-200 и ТГВ-300 с номинальными мощностями 200 и 300 МВт соответственно. Здесь обмотка статора, обмотка ротора и сердечник статора охлаждаются непосредственно водородом. Буквенный код В (В – водород).

Водородноводяное непосредственное охлаждение применяется для генераторов с номинальной активной мощностью от 160 до 1200 МВт. Здесь обмотка статора охлаждается непосредственно водой, а обмотка ротора и сердечник статора – непосредственно водородом. Буквенный код ВВ (В – водород; В – вода).

Примечание: для турбогенераторов ТГВ-500 применяется также водородноводяное непосредственное охлаждение, где обмотка статора и обмотка ротора охлаждаются непосредственно водой, а сталь статора – непосредственно водородом.

Источник