Меню

Схемы переделки генераторов в электродвигатели



Проверка возможностей автомобильного генератора в качестве электродвигателя.

Решил провести эксперимент, по возможности использования генератора от легкового автомобиля, как тягового двигателя с прямым приводом на колесо, для велосипеда или что-либо подобного.
У меня как раз есть исправный генератор, но использовать его в автомобиль я не могу, как и некоторые другие вещи, но зато попробую провести этот эксперимент сам. В интернете на специализированных форумах есть размышления, что так не делают, что и в конструкции генератора специально особым образом подобраны формы ротора и статора, для работы его как генератора. Да и наличие отдельной катушки возбуждения усложняет конструкцию. Но из достоинств – генератор не создает практически никаких сопротивлений вращению, если на него не подан ток, и он есть за бесплатно. Заниматься самому математическим анализом реализации такой возможности, нет достаточного опыта и данных, пока (если кто разложит все по полочкам — буду признателен).
Схема подключения генератора:

Генератор был аккуратно разобран:

Из него был удален диодный мост и схема регулятора напряжения, подключены провода к обмоткам генератора, и щеточному узлу катушки возбуждения:

Затем все было собрано аккуратно и стало иметь такой вид:

Скрепка – торчащая из задней крышки генератора, фиксирует подпружиненные щетки в заглубленном состоянии, что позволяет правильно установить заднюю крышку, ничего не сломав. Затем скрепка вытягивается, и щетки упираются в коллектор.

Далее, из имеющегося блока электроусилителя руля, работающего на трехфазный мотор, изымаем блок силовых транзисторов. К сожалению, использовать его как полноценный блок управления трехфазным мотором (BLDC) нельзя.

Поэтому подключим блок силовых транзисторов к имеющейся плате 2CAN (описано ранее), через самодельную плату с драйверами управления транзисторами. А так как лето у нас короткое, то плата сделана самым простым и быстрым проверенным способом лазерной печати и утюга:

Общая схема получилась примерно такая:

Так как на плате 2CAN разведены не все выводы платы и микроконтроллера, пришлось добавить соединений навесным монтажом:

Написана простая программа управления трехфазным двигателем, используя таймер №1.Пока решил не использовать датчики положения ротора, ограничившись только регулировкой частоты вращения и заполнением ШИМ (амплитуду синусоид). Если генератор покажет оптимистичные характеристики, то тогда и усложню схему и программу. Форму напряжения выбрал синусоидальную, коэффициенты для таймера рассчитал простой программой на javascript, (позволяет писать программы в любом текстовом редакторе и запускать на выполнение любым браузером), файл sine.html (в zip) прилагаю ниже.

При открытии его браузером, можно просмотреть значения, и скопировать в буфер обмена:

Такая конструкция получилось в итоге:

Форма результирующего напряжения двух фаз такая (осциллограф двухлучевой к сожалению):

(после простого R-C фильтра для щупа осциллографа), а так без фильтра на прямую:

В качестве источника питания был выбран аккумулятор 12В 7А, через предохранитель 30 Ампер питание подавалось на схему. Обороты генератора, которые меня интересовали, были в пределах от 0 до 420 оборотов в минуту. Исходя из того, что если на шкив генератора надеть колесо диаметром 20 см, и при этом скорость максимальную ограничить в 16км/час. Подключим генератор:

Примитивным способом оценить крутящий момент, развиваемый генератором, решили с помощью поднятия груза, подвешенного за веревку к шкиву генератора.

Далее все расчеты довольно примитивны, и возможно есть ошибки. В качестве груза выбрал две 5-литровых емкости с водой. При диаметре шкива 5,5см, генератор с уверенно поднимал этот груз при 50 % заполнении ШИМ таймера на высоту 50 см за 3 секунды. Ток от аккумулятора составлял порядка 16 Ампер, но и напряжение на нем падало до 11 Вольт (слабоват аккумулятор). Получается, гарантирован крутящий момент примерно 2,75 ньютона на метр, при 3 оборотах в секунду. Сила тяги генератора с колесом диаметром 20см, одетого напрямую на вал, составила бы 12,5 ньютона (условная скорость составила бы примерно 7км/час). Для ребёнка, стоящего на роликах может быть и хватит. Для реализации полной мощности потребовался бы аккумулятор большей емкости, и более толстые провода. Без нагрузки, генератор вращается без подачи тока на катушку возбуждения (как несинхронный трехфазный электродвигатель). По идее, учитывая, что при потребляемой мощности в 176 ватт, получаем мощность на совершение работы, очень примерно оцененной в 16 Ватт, КПД полученного устройства не радует. Даже если удастся увеличить КПД использованием датчиков положения ротора в два -три раза, тяга маловата все таки для взрослого человека. Значительная часть тока тратится на катушку возбуждения, при этом, в зависимости от нагрузки, оборотов и температуры генератора составляет это порядка 5 — 12 Ампер. Да и генератор в родном рабочем режиме крутится на горазбо более высоких оборотах (2100 — 18000 об/мин). Выходить на рабочие токи больше 30 Ампер в схеме посчитал нецелесообразным. Конечно, используя мотор с постоянными магнитами, можно значительно поднять КПД устройства. Но все равно, значительные токи в узлах схемы, при напряжении питания в 12 Вольт, не позволяют добиться приемлемых параметров при длительной работе мотора в тяговом режиме. А перематывать катушки статора генератора под другое напряжение, количество оборотов, делать ротор с неодимовыми магнитами — это уже надо быть сильно мотивированным на это. Практичнее переходить на готовые, относительно легко доступные BLDC моторы для велосипедов, скутеров и т.д. с напряжением 36 Вольт и более. Также был подключен оригинальный двигатель, и это совсем другая тема и возможности:

В автомобильных вентиляторах охлаждения, часто применяются двухфазные электродвигатели с постоянными магнитами, выдавая мощность под 300ватт (но коррозия и большие токи зачастую выводят из строя компактную схему управления, встроенную в мотор).

Других целей больше не было, остался удовлетворенным полученным отрицательным результатом 🙂

Приведу настройки таймера:

А табличные значения получаем как написано выше (редактируем имя распечатываемого на экран массива ) 🙂 Плохо что видео нельзя тут приложить, довольно забавно. Если есть вопросы – без проблем задавайте, пишите 🙂

С уважением, Астанин Сергей, ICQ 164487932.

Добавил сам проект, правда внутри много лишнего осталось от проекта общения по CAN, но мотору не мешает.

Источник

Мотор из генератора своими руками | Делаем электродвигатель

Многие из нас, видя проезжающие по городу электро- скутеры, велосипеды или самокаты, с завистью оборачиваются вслед. Еще бы, пользоваться любимым транспортным средством прилагая минимум усилий – мечта каждого. Вот только стоят они весьма недешево. Вот тут-то и возникает мысль: а нельзя ли переделать свой велосипед в электрический?
Необходимым элементом для переделки является безщеточный мотор постоянного тока (BLDC), но его цена на рынке достаточно высока. В нашей статье мы расскажем вам, как сделать такой мотор из генератора своими руками. Это значительно уменьшит расходы на переделку велосипеда. Ведь б/у генератор в хорошем состоянии можно недорого купить на любой автомобильной разборке.

Для того, чтобы сделать мотор из генератора, вам понадобятся:

  • старый автомобильный генератор;
  • плоскогубцы, набор ключей и отверток;
  • контроллер регуляторов оборотов;
  • паяльник;
  • провода;
  • две аккумуляторные батареи на 6В;
  • мультиметр;
  • подшипники (при необходимости их замены).
Читайте также:  Схема горит лампочка генератора

Шаг 1. Разбираем автомобильный генератор

Раскручиваем четыре длинных болта, соединяющих генератор.

Отсоединяем регулятор напряжения (реле-регулятор в сборе со щетками) и снимаем его.

Придерживая шкив, отворачиваем гайку крепления и снимаем его.

Снимаем все шайбы, крыльчатку и вынимаем шпонку.

Снимаем переднюю крышку, вынимаем ротор с коллектором и подшипники.

Если подшипники износились – замените их на аналогичные.

Откручиваем статор от задней крышки и выпрямительного блока и вынимаем его.

Отсоединяем и удаляем блок выпрямителей (диодный мост).

Источник

Как из автомобильного генератора сделать электродвигатель

Идея переделки автомобильного генератора в электродвигатель может быть интересна тем, у кого уже есть ненужный генератор. Плюс ко всему в б/у состоянии исправные они стоят дёшево.

Автомобильный генератор представляет из себя трёхфазную синхронную машину с электромагнитным возбуждением. Стало быть и электродвигатель у нас получится трёхфазный синхронный с электромагнитным возбуждением. Так что если вы услышите от кого-то, что из такого вот генератора можно сделать именно BLDC-электродвигатель, то знайте, что этот кто-то избавляется от электромагнитного возбуждения и наклеивает постоянные магниты на ротор.

Итак, снимаем заднюю крышку и достаём оттуда щёткодержатель с графитовыми щётками. Через эти щётки происходит питание обмотки возбуждения ротора посредством их контактна с кольцами на валу. Как можно видеть, никаких постоянных магнитов здесь нет, а значит эта архитектура не является BLDC.

Удаляем безвозвратно полупроводниковый выпрямитель в чёрном пластиковом кожухе. Там ещё есть ограничитель напряжения. Всё это нам не понадобится. Изначально генератор вырабатывает трёхфазный переменный ток, а этот мост выпрямляет его.

Далее необходимо поставить щёткодержатель на место. Если же вы всё-таки решили делать именно BLDC-электродвигатель, то вам этот щёточно-кольцевой узел не понадобится. Щёткодержатель можно удалить, а кольца с вала просто срезать. Но в таком случае вам придётся извлечь ротор из статора и доработать его на токарном станке — снять слой железа и наклеить на его поверхность постоянные неодимовые магниты.

Однако эти магниты критичны к перегреву, и вам придётся как-то всё это охлаждать, что не всегда удобно. Если же не заморачиваться с магнитами, а оставить родное возбуждение, то никакие перегревы такому электромотору не страшны.

Соединяем статорную обмотку в «звезду», прозвонив её предварительно. Далее подключаем провода для питания обмотки возбуждения. Она запитывается постоянным напряжением не более 12 В.

Теперь вы можете взять любой синусный контроллер от электровелосипеда, который не векторный и работает без датчиков Холла. Это важно, потому что у нас не BLDC-электромотор, а трёхфазный синхронный. Лучше брать контроллер с напряжением не выше 36 В, а иначе самодельный электромотор может перегреваться. Сила тока у этого контроллера до 14 А, и таким образом он может выдать электромотору до 500 Вт мощности.

На таких параметрах мощности самодельный электродвигатель работает продолжительно без перегрева. Если хотите большую мощность, то его работа будет кратковременной, или же нужно дополнительно приколхозить охлаждение. Постоянное напряжение для питания обмотки возбуждение 12 В лучше брать от DC/DC-преобразователя с 36 В в 12 В, или же можно запитать эту обмотку от 36 В, но через резистор.

КПД такого электродвигателя конечно же меньше, чем у BLDC с неодимовыми магнитами. Ведь здесь расходуется дополнительная энергия на питание обмотки возбуждения.

Источник

Делаем мотор из автомобильного генератора

Интересный способ использовать генератор в режиме двигателя:

1) к выводам обмотки подключаем соответствующие плечи выходного каскада контроллера

2) на обмотку возбуждения подаем нормированный ток

Диодную сборку можно было не снимать, её всё равно необходимо будет поставить.

Оно работает т.к. генератор — синхронная электрическая машина, обратимая, т.е. можно привод использовать и генератором, и двигателем.

ПС: заказал в свои щупальца плату BLDC-контроллера (без всего)

Дубликаты не найдены

Использовалась звезда или треугольник? Хотелось бы увидеть цЫферки. Мощность и КПД, которые были получены в режиме двигателя.

Не так давно кто-то из крупных мировых автопроизводителей наконец-то внедрил в автомобиль комбинированный стартер/генератор. Непонятно только почему не лет 10-15 назад?

Буренков К. Э. Интегрированный стартер-генератор – основа перспективных конструкций автомобиля / К. Э. Буренков, Ю. А. Купеев, А. Н. Агафонов // Автотракторное электрооборудование. 2001. № 3–4. С. 23.

а сам файл можно почитать, он свежее, тут:

Часто моторгенераторы, стартергенераторы используют в

гибридах. Или в авто с системой Старт-Стоп.

Тоже интересный файл:

Я долго думал ,чтоб такое сострить в сторону автора ,который это «изобрёл», но там было много мата и что-то про физику 8-9 класса. А вообще электродвигатель в роли электродвигателя имеет КПД побольше. И если уж на то пошло то лучше использовать стартер.

КПД обусловлено физическими характеристиками электрической машины и от смены режима работы характеристики не меняются, как и КПД.

Копируй уж тогда полностью)

Приоритетная функция электрической машины определяет её конструктивные особенности, вследствие которых обратимость становится неравномерной. Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

Это не копия, это здравый смысл.

Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

В вашей копипасте подразумеваются различные эл. машины, а не одина и та же. Из общего у них: чем используемый в качестве генератора соответствующий по размерам электродвигатель

А вообще электродвигатель в роли электродвигателя имеет КПД побольше.

Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

В видео явно используются электрогенератор в качестве двигателя, что по копипасте с вики, якобы делает его чуть более КПДедистым, нежели электродвигатель, используемый в качестве генератора(на самом деле — нет, т.к. для генерации и движения используется одна и та же эл. машина).

Читайте также:  Оборудование для ремонта стартеров генераторов

Я и не говорил про одну машину я сказал, что для электродвижения эффективнее использовать электродвигатель.

А вообще электродвигатель в роли электродвигателя имеет КПД побольше.

И если уж на то пошло то лучше использовать стартер.

Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

На самом деле нужно сравнивать конкретные цифры, а не на пустом слове делать выводы.

И если уж на то пошло то лучше использовать стартер.

Стартер не подойдет по ряду причин:

Низкооборотистый — нужен редуктор

Контактная группа быстро выйдет из строя — КТ имеет разделенные сегменты обмоток, что очень быстро скушает щетки

И, самый весомый — КПД, у стартера он низкий, всего пара десятков %%.

Друг, я говорю о том, что есть ЭЛЕКТРОДВИГАТЕЛИ и есть ГЕНЕРАТОРЫ, и что при невероятной, даже ЧУДОВИЩНОЙ, схожести между собой они имеют РАЗЛИЧИЯ. Вы же толи читаете по диагонали, толи словоблудствуете ибо фразу:

что генератор имеет большее КПД, нежели электродвигатель таких же габаритов

нужно читать целиком, а не вырывая КЛЮЧЕВЫЕ слова, а именно:

электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

Никто не оспаривает этот постулат.

и что при невероятной, даже ЧУДОВИЩНОЙ, схожести между собой они имеют РАЗЛИЧИЯ.

Здесь есть здравый смысл, заточить изделие под задачу.

Но я исхожу из мысли, что мы используем одну эл. машину как в режиме генератора, так и двигателя, а не два разных вида эл.машин.

электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель.

Верно, но из этой фразы мы имеем:

1) Электрогенератор будет иметь больший КПД.

2) Электрогенератор будет иметь меньшие габариты при том же КПД, что и сравнимый по КПД электродвигатель.

3) Нигде в этой фразе нет упоминания, что КПД генератора в режиме двигателя будет хуже.

4) Что в видео из генератора делают двигатель, по КПД не хуже, чем из двигателя сделать генератор.

5) Используя разные эл. машины получим разный КПД.

Теперь смотрим на ваше изначальное предложение:

А вообще электродвигатель в роли электродвигателя имеет КПД побольше. И если уж на то пошло то лучше использовать стартер.

И, как минимум, оно не вписывается в ваши текущие выводы

2). по вашей логике

Это не по моей логике, это выводы из вашей цитат(ы).

3) Нигде в этой фразе нет упоминания, что КПД генератора в режиме двигателя будет хуже — но как двигатель он хуже.

«КПД не хуже, но как двигатель хуже». Вы определитесь.

Вот как мы с тобой выглядим.

Ионолеты: в небо на ионном ветре

На наших глазах электроэнергия начинает играть все большую роль в транспорте. Вслед за электромобилями, успешно отвоевывающими себе место на дорогах, в небо поднимаются электросамолеты. Но для авиации такие изменения могут иметь далекоидущие последствия. Вполне возможно, что самолеты завтрашнего дня будут поднимать в небо не электромоторы, а атмосферные ионные двигатели. Появление ионолетов обещает качественный прорыв в авиатехнике.

Сегодня ионолет, он же ионокрафт (или лифтер, с ударением на последнем слоге), – это только легкая летающая модель, способная мгновенно оторваться от поверхности, как только на провод, соединяющий ее с источником питания, будет подан электрический ток. Но для инженеров и фантастов это один из вариантов летательного аппарата будущего, имеющего весьма заманчивые характеристики. Он будет экологически чистым, в отличие от современных самолетов и вертолетов, бесшумным и без значительных усилий сможет вертикально взлетать и садиться. Во всяком случае, так его представляют исследователи. Не это ли технология для летающих автомобилей будущего?

Подъемная сила в таком аппарате создается благодаря эффекту Бифельда – Брауна. Еще в 20-х годах прошлого века американскими учеными Томасом Брауном и ассистировавшим ему Полом Бифельдом, экспериментировавшими с рентгеновскими трубками Кулиджа, был обнаружен необычный эффект. Некая сила действовала на заряженный до высокого напряжения асимметричный конденсатор. Ее было достаточно даже для того, чтобы поднять конденсатор в воздух. Сам ученый поначалу был уверен, что нашел способ влиять на гравитацию с помощью электричества. Тогда, открытому явлению, даже дали соответствующее название – «электрогравитация». Сегодня такие опыты популярны не только у школьников и студентов, увлекающихся физикой, но и среди сторонников различных теорий, не признаваемых современной наукой. По их мнению, ионный ветер дает только 10-20% тяги ионного двигателя, остальные дает пока не известная науке сила.

Вот только если бы дело было в гравитации, а не в движении заряженных ионов воздуха, как есть на самом деле, то устройство одинаково хорошо работало бы как в воздушной среде, так и в вакууме. Но в результате множества опытов было установлено, что в отсутствие газовой среды устройство не работает. В вакууме эффект исчезает. Здесь не стоит путать ионолет (атмосферный ионный двигатель) с ионными двигателями, все чаще применяемыми в космических аппаратах. Они-то как раз и предназначены для работы в вакууме. Такой двигатель свободно работает в безвоздушной среде, так как реактивная тяга возникает на базе запасенного рабочего тела, которым, как правило, является инертный газ (аргон, ксенон и т. п.). Им космический аппарат заправляют до старта. В случае ионолета его рабочим телом фактически является забортный воздух, который, разумеется, с собой брать в полет не надо.

Секрет подъемной силы ионолета прост. При очень высоком напряжении межу электродами – анодом и катодом – возникает ионный (или электростатический) ветер. Это явление также называется электрогидродинамическим эффектом (ЭГД). Причем один электрод, как правило, тонкий или острый, другой – широкий и плоский. То есть они не симметричны друг другу. Таким образом, получается левитирующий асимметричный воздушный конденсатор.

Один из вариантов модели ионолета / © jlnlabs.org

Около отрицательно заряженного электрода молекулы воздуха ионизируются. Они получают отрицательный заряд и начинают двигаться к электроду с положительным зарядом. При этом они увлекают на своем пути нейтральные молекулы воздуха, чем и создается необходимая тяга для полета. Причем полной ионизации проходящего через аппарат воздуха не требуется.

Простейшая схема летательного аппарата выглядит следующим образом. Отрицательно заряженные электроды представляют собой металлические острия. Их несколько, и они расположены над металлической сеткой с положительным зарядом. Образовывающиеся между ними ионы устремляются к сетке, где и расстаются со своим зарядом, выходя из двигателя уже обычными молекулами воздуха. Тем самым электроэнергия высокого напряжения преобразуется в кинетическую энергию воздушного потока. Такой ионный двигатель еще называют электростатическим движителем (ЭСД).

Читайте также:  Схема ford mondeo ремень генератора

Регулируя напряжение на электродах, можно дать команду на взлет и посадку, изменяя напряжение только на некоторых электродах, можно наклонять и поворачивать аппарат. И при этом никаких движущихся частей двигатель на ионном ветре не имеет. Конструкция проста, а перспективные варианты движителя не предполагают серьезного технического обслуживания, смазки и т. п.

Считается, что сам термин «ионокрафт» (ionocraft), в русском варианте «ионолет», придумал наш соотечественник. Пионер авиации, летчик-ас Первой мировой войны, покинувший Россию после революции, авиатор, изобретатель и авиаконструктор Александр Николаевич Прокофьев-Северский. Он же в 1964 году получил патент на свой летательный аппарат. За годы, проведенные в Америке, Северский работал консультантом при Министерстве обороны, основал две авиастроительные фирмы, сконструировал несколько удачно себя показавших самолетов, стал автором множества изобретений и патентов. Однако коммерческого успеха так и не добился. В 1939 году Северский был отстранен инвесторами от управления основанной им компании. После чего он занялся писательской деятельностью, читал лекции и благодаря своему умению выступать на публике получил широкую известность, а в 60-х годах занялся ионолетами. Северский подробно описал физику эффекта и запатентовал основные принципы работы ионолета.

Модель, созданная Северским, представляла собой прямоугольную рамку из бальсы (дерева, древесина которого считается самой легкой в мире) с натянутой на нее алюминиевой проволокой. Электрическая энергия подводилась к аппарату по коаксиальному кабелю. Но сделать что-то большее у него не получилось. Попытка Северского построить ионокрафт, способный подняться в воздух с человеком на борту, не удалась. Формально по причине отсутствия денег. Но все-таки основная сложность создания такого аппарата кроется в другом. Даже сейчас модели ионолетов не способны нести на себе собственный источник питания. Все модели подключаются к внешнему источнику питания, так как собственный им поднять еще не под силу, не говоря уже о пилоте или дополнительном оборудовании.

Летающая модель ионолета и проект одноместного аппарата А. Н. Северского / © Popular Mechanics

Не все так просто

В чем же проблема? Атмосферному ионному двигателю требуется ток очень высокого напряжения. В то же время к идее ионолета не так давно вернулись снова. И не кто-то, а исследователи из Массачусетского технологического института (MIT), который, как известно, является новатором в области перспективных технологий. Согласно их выводам, для подъема в воздух беспилотного аппарата с оборудованием на борту и собственным источником питания потребуется несколько сотен или даже тысяч киловольт. Для сравнения, в бытовой эклектической сети напряжение тока составляет 220 вольт. Это всего 0,22 киловольта. Легкой экспериментальной модели ионолета, сделанной в лаборатории MIT, потребовалось напряжение всего в несколько киловольт. В качестве отрицательно заряженного электрода выступил тонкий медный провод, а положительного – легкая алюминиевая трубка. Каркас был склеен из бальсы.

Но в целом результаты опыта оказались обнадеживающими. Они показали, что двигатели, основанные на эффекте Бифельда – Брауна, могут быть гораздо более эффективными, чем традиционные. Эксперименты показали, что тяга такого атмосферного ионного двигателя может составлять до 110 ньютонов на киловатт мощности, тогда как традиционные реактивные двигатели имеют показатель всего 2 ньютона на киловатт.

Но есть и другая сложность в создании таких аппаратов. В сравнении с традиционными реактивными двигателями, атмосферный ионный двигатель существенно уступает по показателю «плотности» тяги, то есть ее количеству на единицу рабочей площади. Объясняется это тем, что ее величина напрямую зависит от ширины воздушного зазора между анодом и катодом. Чем он больше, тем сильнее тяга. Следовательно, чтобы создать даже легкий летательный аппарат, потребуется разместить электроды на большом расстоянии друг от друга. Фактически такие зазоры будут определяться максимально возможными габаритами летательного аппарата. Таким образом, сам фюзеляж, окруженный электродами, будет находиться внутри электростатического движителя.

Ионолет в виде «летающей тарелки» / © Popular Mechanics

Если верить обещаниям исследователей, передвигаться такой аппарат сможет бесшумно и не будет иметь вредных выбросов. Кроме того, он сможет вертикально взлетать, садиться, а также зависать над поверхностью. В этом он подобен вертолету. Но, в отличие от последнего, отсутствие вибрации позволит создать идеальный комфорт в пассажирской кабине. Взлетать и садиться такие аппараты смогут в непосредственной близости от жилых и административных зданий, не создавая шума, а следовательно, и неудобства окружающим. В прошлом такие летательные аппараты представлялись пилотируемыми, но сейчас с развитием беспилотной техники можно сказать, что первые ионолеты будут обходиться без человека на борту.

Незаменим он окажется и на военной службе. Ионолет невидим в инфракрасном диапазоне, что является настоящей находкой для военных. Такой беспилотный летательный аппарат можно будет использовать для разведывательных и иных миссий, не рискуя быть обнаруженным прибором ночного видения. Реализован ионолет может быть и в виде левитирующей платформы, получающей питание с земли по проводам. Летающий строительный кран, беспилотник для патрулирования дорожного движения, метеозонд, отслеживающий изменения погоды. Ему можно найти много способов применения.

Могут пригодиться ионолеты и для полетов в атмосфере других планет. Ведь им не надо нести на борту топливо. Но все-таки, осталось решить вопрос с мощным источником питания.

Сравнение экономичности несущей системы вертолета и ионолета (электростатического движителя) / © «Техника-молодежи»

Если есть опыт работы с электричеством, сделать простейшую летающую модель ионолета можно и самому. При этом необходимо предпринять соответствующие меры предосторожности, так как придется работать с током высокого напряжения. В основе конструкции – склеенная из тонких бальсовых планок треугольная рама. Верхний электрод – тонкая медная проволока сечением 0,1 кв. мм. Нижний – широкая полоска из пищевой алюминиевой фольги, натянутая на раму. Расстояние между ними – около 30 мм. Фольга должна огибать планки и не иметь острых ребер, в противном случае может возникнуть электрический пробой.

После сборки конструкции к ней подключается высоковольтный источник питания с напряжением 30 кВ. Положительный вывод – к проводу, отрицательный – к фольге. Чтобы модель не улетела, ее нужно привязать к столу капроновыми нитями.

Источник