Меню

Система автоматического регулирования бесщеточного генератора



ГЛАВА 1.
СИ СТЕМЫ ВОЗБУЖДЕНИЯ БЕСЩЁТОЧНЫХ СИНХРОННЫХ СУДОВЫХ ГЕНЕРАТОРОВ

Системы возбуждения, используемые в настоящее время на судах действующего флота, являются замкнутыми комбинированного типа прямого действия с амплитудно-фазовым компаундированием. В качестве объекта управления в основном применяется надежный бесщеточный синхронный генератор с предвозбудителем или без него.

1 .1 Бесщёточный синхронный генератор

Одним из основных недостатков при обслуживании судовых синхронных генераторов является наличие щёточно-кольцевого аппарата. Этот узел наиболее изнашивается в процессе работы. Большое количество пыли от угольных щёток загрязняет обмотки, создавая проводниковые мосты между токоведущими частями синхронного генератора и корпусом: ухудшается изоляция генератора, уменьшая срок их службы, требуется внеочередной ремонт с полной разборкой.

Всё это отсутствует у бесщёточных синхронных генераторов. Возбуждение СГ осуществляется небольшим по размерам возбудителем переменного тока, состоящим из трёхфазной обмотки, расположенной на роторе генератора и электромагнитных полюсов, находящихся на статоре рядом со статорной обмоткой основной машины. Обмотка возбуждения возбудителя питается постоянным током от автоматического регулятора напряжения. Трёхфазный переменный ток, генерируемый в роторной обмотке, выпрямляется трёхфазным выпрямителем, расположенным на роторной обмотке возбудителя и поступает на роторную обмотку возбуждения генератора. Выпрямительное устройство бесщёточного генератора состоит из кремниевых диодов, соединённых по трёхфазной мостовой схеме, регулируемого балластного резистора и сглаживающего конденсатора.

Бесщёточный синхронный генератор (рис. 1.1) состоит из следующих компонентов, где:

G — статорная обмотка, выходная;

FG — роторная обмотка возбуждения генератора;

Si — блок вращающихся кремниевых выпрямителей;

E — роторная обмотка возбудителя, выходная;

FE — статорная обмотка возбуждения;

EVA — внешний реостат задающего напряжения;

AVR — автоматический регулятор напряжения (АРН).

Статорная обмотка синхронного генератора уложена в пазы железа статора и представляет собой три обмотки, соединенные звездой.

Конструктивно БСГ объединён с возбудителем переменного тока и вращающимся выпрямительным устройством в один агрегат. Отличительной особенностью БСГ является отсутствие контактных колец и щёток.

Возбудитель представляет собой обращённый трёхфазный синхронный генератор, у которого обмотка возбуждения является неподвижной и питается непосредственно от автоматического регулятора напряжения. В некоторых рассматриваемых далее системах возбуждения и регулирования напряжения генераторов (например,“ TAIYO ”, “ MITSUBISHI ”) обмотка возбуждения возбудителя состоит из двух частей: основной и управляемой от A РН , что обеспечивает более надёжное начальное возбуждение. Трёхфазная роторная обмотка возбудителя, соединённая звездой подключена к роторной обмотке генератора через трёхфазный блок вращающихся кремниевых выпрямителей, который находится между этими двумя обмотками, ближе к возбудителю, на специально

Рис. 1.1. Бесщёточный синхронный генератор

смонтированном изоляционном кольце. Кольцо и вентили вращаются вместе с роторами генератора и возбудителя и размещёны на общем валу.

Трёхфазный переменный ток, генерируемый при вращении в роторной обмотке возбудителя , выпрямляется трёхфазным кремниевым выпрямителем, расположенным на роторной обмотке возбудителя, и постоянное напряжение поступает на роторную обмотку генератора. Расположение вращающихся выпрямителей на роторной обмотке возбудителя удобно как для воздушного охлаждения, так и проведения обслуживания и ремонтных работ при проверке и замене вентилей.

В дополнение к кремниевому выпрямителю параллельно выходному напряжению подключается сглаживающий конденсатор и разрядный резистор для предотвращения обмотки возбуждения и конденсатора от пробоя.

Благодаря такой конструкции, исчезает необходимость в контактных кольцах и щётках для подвода тока к обмотке возбуждения генератор а . Таким образом, возбудитель совместно с A РН позволяет поддерживать напряжение генератора с заданным отклонением при малых и больших нагрузках и обеспечивает защиту от короткого замыкания. Отсутствие щёточной аппаратуры значительно повышает надёжность БСГ, сокращает трудозатраты на обслуживание ввиду отсутствия угольной пыли на обмотках. Они также могут применяться и на высоких частотах вращения первичных двигателей, чем обеспечивается более надёжное возбуждение.

У БСГ, также как и у обычных синхронных генераторов, имеется демпферная обмотка. Она находится на явных полюсах ротора и имеет вид широких медных шин, соединенных в беличью клетку. Назначением демпферной обмотки является предотвращение колебаний напряжения ввиду резкого изменения нагрузки при параллельной работе генераторов, а также ограничение повышения третьей гармоники напряжения с увеличением нагрузки.

В результате совместных усилий обмоток статора генератора и возбудителя создаётся результирующая магнитодвижущая сила а, следовательно, и поток возбуждения, обеспечивая реакцию ротора и падение напряжения в обмотке статора генератора во всех режимах работы – от холостого хода до номинальной нагрузки.

Возбудитель переменного тока представляет собой обращённый синхронный генератор роторного типа. Ротор установлен на том же валу, что и ротор генератора и представляет собой трехфазную обмотку переменного тока. Нагрузкой возбудителя является обмотка возбуждения статора, поэтому необходим возбудитель переменного тока высокой частоты: чем выше частота, тем больше возбуждение. Однако высокая частота стремится увеличить потери в железе. Так как увеличение числа полюсов пропорционально увеличению частоты, то частота особенно ограничивается при использовании на низкой частоте вращения с точки зрения экономичности конструкции. В основном, для возбудителя переменного тока принята частота 60 Гц.

Читайте также:  Бензиновый генератор eu 10i

Кремниевый выпрямитель возбудителя переменного тока. Учитывая электрические и механические свойства, кремниевый выпрямитель для бесщёточного синхронного генератора должен быть высоконадежным, небольших габаритов и массы.

Он состоит из кремниевой части, которая закреплена вертикально на тонкой пластине основания, для надежного контакта пластины, основания и элемента, и питающего провода. Этот силовой тип контакта кремниевого элемента выпрямителя использует свою огромную силу, когда она приложена вертикально вместе с давлением по направлению к пластине основания и проявляет великолепные характеристики, учитывая такие механические недостатки как внешнее давление, центробежная сила, вибрация системы в действии. Все главные части кремниевого элемента типа P-N перехода помещены в кожух, в котором находится инертный газ, на работу которого не влияют окружающие атмосферные условия.

В дополнение к кремниевому выпрямителю параллельно подключены конденсатор и резистор для предотвращения от чрезмерного напряжения обмоток, предохраняя их от пробоя. При сборке вышеупомянутых компонентов FUJI El . произвел тщательную проверку их механической силы и местоположения, минимизируя пространство для установки, добиваясь однородной и эффективной вентиляции.

По габаритам БСГ сохранил те же размеры что и обычные СГ.

В настоящее время бесщеточные синхронные генераторы успешно используются на судах в качестве основных и аварийных источников электроэнергии.

Рис. 1.2. Изоляция вала БСГ от наводящих токов

Для предотвращения возникновения токов на валу генератора, появляющихся благодаря разбалансу магнитного сопротивления магнитных цепей, используются изоляторы на боковых крышках, как показано на рис. 1.2. Напряжение на валу для генераторов повышенных напряжений и частот обычно составляет 1 В и менее, и реже несколько вольт. Значение сопротивления изолятора должно быть 1-3 кΩ. Если масляная пленка с принудительной смазкой местами исчезает, это может привести к поломке подшипника или аварии генератора в целом.

В основном БСГ не требует особых трудозатрат на обслуживание. Достаточно почаще менять фильтры на воздухозаборах.

Таким образом, БСГ обеспечивает максимум надежности при минимуме трудозатрат на обслуживание.

1 .2. Элементы системы возбуждения

Одним из основных элементов системы возбуждения синхрон ных генераторов является трёхфазный трёхобмоточный трансформатор TWT (рис. 1.3). Этот трансформатор разработан для:

§ получения тока возбуждения, необходимого генератору для выработки номинального напряжения на холостом ходу и под нагрузкой;

§ поддержания постоянного значения номинального напряжения путём компенсации падений напряжения, возникающих в генераторе в соответствии с векторной диаграммой;

§ подпитки обмотки возбуждения генератора суммарным током, выпрямленным главным выпрямителем.

Конструктивно трёхфазный трансформатор представляет собой систему из трёх обмоток со стальным Ш-образным сердечником, имеющим обмотки напряжения и тока. Уменьшенный размер сердечника используется для получения более упрощённой конструкции. Обмотки размещены таким образом, что воздушное пространство между проводами настолько мало, насколько возможно и таким образом в большой степени улучшает эффективность отвода температуры. Кроме того, поверхность изоляции сконструирована так, что площадь незащищённой поверхности на открытом пространстве увеличена и как результат – уменьшение колебаний температуры на поверхности изоляции. В результате местный перегрев внутри обмоток устраняется, что увеличивает надёжность.

Главный выпрямитель MR разработан для выпрямления выходного тока трёхфазного трансформатора, питания обмотки возбуждения генератора и использует кремниевый элемент выпрямления. Он защищён от обратного напряжения путём применения конденсатора C, описанного ниже так же, как и сам эффект хранения заряда этим конденсатором.

Реактор переменного тока L подсоединяется на фазные клеммы параллельно статорной обмотке генератора и предназначен для сдвига вектора тока холостого хода относительно напряжения генератора на угол, равный примерно 90° в сторону отставания.

Рис. 1.3. Принципиальная схема системы возбуждения и регулирования

Конструкция реактора такова, что величина зазора может быть легко выставлена для получения необходимого значения. Замыкающая секция построена так, что в соответствии с результатами испытаний при работе с высокой температурой, величина зазора, изменённая ухудшением изоляции, может быть успешно компенсирована. Обмотка катушки должна непосредственно проходить вокруг железного сердечника, таким образом, высокая температура в достаточной степени передаётся железному сердечнику. В проекте то же самое рассмотрено относительно изоляции. Результат состоит в том, что реактор имеет компактный размер и обеспечен достаточной индуктивностью, требуемой регулятором.

Вся конструкция в целом пригодна к работе в виде, разработанном для предотвращения появления прогибов и деформаций.

Читайте также:  6678205 генератор регулятор напряжения

Результаты испытания на вибрацию доказывают, что устройство практически несмещаемо.

Блок конденсаторов С. Этот тщательно подобранный блок конденсаторов позволяет возникать резонансу в цепи реактора переменного тока и конденсатора. Поэтому на ток возбуждения в генераторе практически не влияют изменения значений сопротивления при повышении температуры в цепи возбуждения.

Соответственно, напряжение генератора устойчиво и не колеблется при изменениях температуры. Это позволяет чрезвычайно легко поддерживать напряжения на постоянном уровне, когда генератор запущен и нет необходимости предвозбуждать генератор, у которого небольшой остаточный магнетизм. В результате получаем возможность поддерживать постоянное значение вырабатываемого напряжения. В целом для выпрямительных цепей, имеющих большие значения индуктивности на входе и выходе, вырабатываемая выходная кривая (синусоида) напряжения искажена, что препятствует управлению напряжением через тиристор. Однако при установке конденсатора в цепь выпрямителя, форма кривой напряжения формируется таким образом, что обеспечивается устойчивый контроль изменения переменного напряжения. Конденсатор имеет малые габариты и размеры так, что внутренние потери сведены к миниму­му — отклонение температуры на 10 °С ниже, чем у других конденсаторов. Что касается конструкции, особое внимание уделено варианту комплектации, в котором монтажная площадка и клеммная колодка расположены таким образом, что конденсатор может удовлетворительно работать при качке и вибрации судна.

Внешний реостат уставки напряжения EVA используется в качестве задатчика эталонного напряжения, с которым сравнивается текущее напряжение генератора. В целом, заданное напряжение устанавливается в диапазоне ±5 % от номинального значения и регулируется внешним резистором, имеющим следующие данные: сопротивление R=1,5 kΩ, мощность 2 KW.

Питающий трансформатор PT предназначен для питания цепей AРН. Он удовлетворяет предъявленным требованиям к питанию цепей управления и стандартизирован.

Компенсатор уравнительного тока используется при работе генератора в параллели. Он состоит из: компенсационного токового трансформатора ССТ и разностного токового трансформатора DCT, резистора CCR и нормально замкнутого контакта автоматического выключателя ACB. Данный контакт размыкается при включении на параллельную работу второго генератора. Таким образом, наличие обмотки DCT AРН2, у подключённого в параллель генератора, обеспечивает равномерное распределение реактивной нагрузки между генераторами.

Шунтовой резистор RS является регулируемым реостатом для использования в шунтирующей цепи тиристора, установленного в выходной цепи трёхфазного трансформатора.

Контрольные вопросы

1. Из каких элементов состоит система возбуждения СГ?

2. Как обеспечивается первоначальное возбуждение СГ?

3. Устройство и назначение реактора и блока конденсаторов.

4. Устройство и назначение трехобмоточного трансформатора.

5. Какая электрическая цепь обеспечивает распределение реактивной нагрузки между параллельно работающими генераторами?

Источник

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

11.11.2015

Автоматические системы регулирования напряжения генераторов с корректором напряжения

Во время работы напряжение синхронных генераторов зависит от тока нагрузки, коэффициента мощности, частоты вращения и сопротивления обмоток всех элементов системы возбуждения. Изменение сопротивления обмоток во время работы системы возбуждения зависит от температуры нагрева. Если фазовые компаундирующие устройства автоматически регулируют напряжение по воздействию тока нагрузки и коэффициента мощности, то для учета остальных факторов, влияющих на напряжение генератора, дополнительно применяются корректоры напряжения.

Автоматический бесконтактный регулятор напряжения УБК-М поддерживает постоянное напряжение синхронных генераторов в эксплуатационных режимах судовой электростанции.

Он предназначен для судовых синхронных генераторов с машинными возбудителями, работает по принципу быстродействующего управляемого фазового компаундирования с корректором напряжения.

Регулятор УБК-М (рис. 1) состоит из трансформатора фазового компаундирования Т1 и трансформатора тока Т2 с выпрямителем U2, предназначенных для подмагничивания усилителя А и корректора напряжения Т3, U3, U4. Трансформатор Т1 имеет две первичные токовые обмотки L1 и L2, включенные в две фазы генератора G2 (с соответствующей геометрической разностью токов в этих обмотках), и первичную обмотку напряжения L3, которая питается от линейного напряжения генератора через дроссель L4 с регулируемым воздушным зазором и резистор R3. Вторичная обмотка трансформатора L5 через выпрямитель U1 питает обмотку возбуждения возбудителя LG1.

Корректор напряжения состоит из измерительного трансформатора Т3 с контуром частотной компенсации и магнитного усилителя А, воздействующих на обмотку подмагничивания L6 трансформатора Т1.

Током выхода трансформатора Т1 управляют, изменяя его подмагничивание, которое зависит от тока обмотки управления L6. Например, при увеличении подмагничивания уменьшается индуктивность обмотки трансформатора и увеличивается ток выхода. Таким образом, трансформатор Т1 обеспечивает управляемое фазовое компаундирование генератора, т. е. при возрастании тока нагрузки или уменьшении коэффициента мощности он увеличивает возбуждение генератора.

Читайте также:  Генератор ваз 21099 ростове

К преимуществам регуляторов УБК-М относится большая надежность благодаря отсутствию у них подвижных механических устройств и контактов. Регуляторы имеют высокую чувствительность и обеспечивают устойчивую параллельную работу генераторов, а также максимальное возбуждение при значительных провалах напряжения на шинах электростанции.

Главная особенность системы автоматических регуляторов напряжения УБК-М, РНА-65, а также РУН — возможность применения их лишь при наличии возбудителя, который существенно снижает надежность установки и быстродействие системы регулирования, значительно увеличивает массу и габаритные размеры.

Синхронные генераторы трехфазного тока типов МСС, МСК, и ГСС имеют статическую систему самовозбуждения автоматического регулирования напряжения. Она работает по принципу фазового компаундирования с применением трехобмоточного трехстержневого трансформатора, силовых полупроводниковых выпрямителей (рис. 2). Основные элементы системы: G — синхронный генератор, VI—V6 — выпрямители, С1— СЗ — конденсаторы, Т — трансформатор фазового компаундирования, имеющий три обмотки: L1, включенную последовательно в статорную обмотку генератора; L2, включенную последовательно с конденсаторами на напряжение генератора, и L3, обеспечивающую питанием обмотку возбуждения генератора.

Принцип самовозбуждения синхронных генераторов, так же как и генераторов постоянного тока, основан на использовании остаточного магнитного поля. Так как сопротивление выпрямителей при малых токах гораздо больше, чем при номинальном, то для начального возбуждения генератора необходимо, чтобы э. д. с., наводимая в обмотке, была достаточно большой. Это достигается включением последовательно с обмоткой L2 конденсаторов С.

Реактивные сопротивления обмотки и конденсаторов подобраны таким образом, что при пуске генератора, когда частота тока в обмотке L2 достигнет 80% номинальной, в контуре наступит резонанс напряжений. Поэтому, несмотря на то, что напряжение, индуцируемое за счет остаточного поля, будет незначительным, по обмотке L2 пройдет большой ток. Вследствие этого в обмотке L3 наводится достаточная э. д. с., и генератор самовозбудится.

При работе генератора э. д. с., индуцируемая в обмотке L3, а следовательно, и ток в обмотке возбуждения генератора зависят от результирующей намагничивающей силы, создаваемой обмотками L1 и L2. Эти обмотки рассчитаны и включены таким образом, что при увеличении тока нагрузки генераторов или при снижении коэффициента мощности (соs ф) увеличиваются результирующая намагничивающая сила и э. д. с., наводимая в обмотке L3. Вследствие этого возрастают ток возбуждения и напряжение генератора. Для повышения точности регулирования в подобные системы фазового компаундирования вводят корректор напряжения.

Рассмотренная система позволяет уменьшить массу и габаритные размеры судовых дизель-генераторных установок, а также провалы напряжения в судовых электрических сетях.
Системы самовозбуждения генераторов имеют также устройство, обеспечивающее равномерное распределение нагрузок при параллельной работе генераторов. Такие системы отличаются большим быстродействием, что достигается исключением возбудителя из системы регулирования.

Автоматические системы регулирования напряжения с тиристорами

На новых судах применяются автоматические системы регулирования напряжения с тиристорами. Применяются различные схемные решения системы регулирования напряжения с использованием тиристоров. Регулирование по отклонению напряжения генератора выполняется путем сравнения регулируемого и эталонного напряжения с выдачей управляющего сигнала на систему управления тиристором. Эталонное напряжение устанавливается с помощью стабилитронов. Структурная схема тиристорного регулятора напряжения (рис. 3) имеет следующие элементы: ИБ — измерительный блок; ФИ — формирователь импульсов; БП — блок питания; Т — трансформатор; V — тиристор управления. Выходной сигнал измерительного блока преобразуется в сигнал управления тиристором с последующим регулированием тока обмотки возбуждения генератора.

В судовых генераторах применяется система амплитудно-фазового компаундирования с тиристорным управлением корректора напряжения. Применение тиристорной коррекции напряжения повышает быстродействие и чувствительность системы автоматического регулирования напряжения судовых генераторов.

В настоящее время в судовых электростанциях устанавливают бесщеточные синхронные генераторы типа ОС, а также типа S. Если в генераторах типов МСК, ГСС, МСС со статическими системами автоматического регулирования напряжения регулируемый ток возбуждения подается в обмотку возбуждения полюсов вращающегося индуктора (ротора) при помощи щеточных скользящих контактов, то в бесщеточных генераторах постоянный ток в роторе создается за счет индуцируемого тока в самом роторе. Принцип автоматического регулирования напряжения генераторов типа ОС, S показан на рис. 4.

С помощью системы автоматического регулирования напряжения АРН в зависимости от нагрузки на генератор G1 регулируется постоянный ток в обмотке LG1.2, установленной на специальных полюсах статора. При вращении ротора магнитный поток, создаваемый обмоткой LG1.2, индуцирует в трехфазной обмотке LG1.3 переменный ток. Выпрямленный ток в роторе при помощи выпрямителя V создает обмоткой возбуждения LG1.1 основной магнитный поток синхронного генератора. Самовозбуждение генераторов типов ОС, S осуществляется аналогично самовозбуждению генераторов типов МСК, МСС, ГСС с наличием щеточного механизма передачи постоянного тока возбуждения во вращающуюся часть машины.

Источник