Меню

Расчет рабочего объема для насоса



Расчет емкости приемного резервуара КНС с несколькими однотипными рабочими насосами

Представлены методы расчета насосных станций в соответствии с требованиями актуализированной редакции СНиП 2.04.03-85 «СП 32.13330.2012. Свод правил. Канализация. Наружные сети и сооружения». Рассмотрены основные требования данного СП и заводов-изготовителей насосных агрегатов к расчетам насосных станций. Выведена формула расчета требуемого рабочего объема насосных станций с несколькими однотипными рабочими насосами. Определена оптимальная логика работы насосов подобных насосных станций, рассмотрены режимы работы насосов, уровни включения и отключения их. Приведен пример расчета рабочего объема приемного резервуара рассматриваемых насосной станции с обоснованием выведенных формул. Показана возможность уменьшения габаритов насосных станций. Представлены обоснования применения рассмотренных формул расчета рабочего объема при расчете насосных станций.

В 2012 г. вышла актуализированная редакции СНиП 2.04.03-85 [1], согласно п.8.2.15 которой, вместимость подземного резервуара насосной станции следует определять в зависимости от притока сточных вод, производительности насосов, допустимой частоты включения электродвигателей и условий охлаждения насосного оборудования. Из всех требований [1], основное – это допустимая частота включений электродвигателя насоса, т.к. по притоку подбирается производительность насоса и учитывает этот параметр. Соответственно, расчет рабочего объема резервуара должен обеспечить условие, при котором, насосы не будут включаться больше допустимой частоты (указанной в паспорте на насос) при разном притоке в насосную станцию, меняющемся в зависимости от времени суток, т.к. это приведет к перегреву двигателя и поломке насоса. Для удовлетворения данного условия (требований СП) необходимо использовать формулу расчета требуемого рабочего объема, подробно рассмотренную в статье «Расчет емкости приемного резервуара канализационных насосных станций с погружными насосными агрегатами» опубликованной в «ВСТ» в 2009г, №11, [2]:

Формула (1) применима только для расчета требуемого рабочего объема малых КНС, в которых установлено не более одного рабочего насоса. При расчете объема средних и крупных канализационных насосных станций с несколькими однотипными насосами необходимо пользоваться формулой, которая обеспечит равномерную нагрузку на насосы и минимизирует рабочий объем, необходимый для правильной работы насосной группы. Излишний объем приведёт только к удорожанию объекта, загниванию сточных вод в станции и заиливанию дна приемной камеры.

Для правильного расчета минимального, требуемого рабочего объема приемного резервуара КНС с несколькими однотипными насосами необходимо соблюдать главное условие, как и для КНС с одним насосным агрегатом — насосы не должны включаться больше максимального числа раз за определенный промежуток времени (допустимая частота включения электрооборудования, п.8.2.15 [1]), т.е. двигатель насосного агрегата не должен перегреваться из-за постоянных включений. Проанализировав работу подобной КНС (приняв условный объем станции, подобрав насосы на максимальный приток, и рассчитываем частоту включений насосов при условиях притока в КНС от 1 до 100% от максимального, см. пример расчета в конце статьи), очевидно, что максимальное число пусков имеет место, когда приток в станцию задействует насосы в режиме, при котором постоянно работают все рабочие насосы за исключением одного, который работает попеременно, т.е. когда:

Рабочий насос, который функционирует попеременно, включается максимальное число раз, когда половину цикла он работает, а половину цикла набирается его регулирующий объем (объем V3, рис. 1), так же как и в станциях с одним рабочим насосом. Насосная станция работает с максимальной нагрузкой насосов, когда задействуется рабочий объем одного (последнего) рабочего насоса. Тогда в расчете рабочего объема всей КНС можно использовать производительность одного насоса, а не всей станции. При этом следует учесть необходимость программирования работы насосов на логику «последовательный пуск / последовательная остановка насосов» и добавить к рабочей высоте КНС уровни включения оставшихся насосов (ΔН). Каждый насос будет использовать свой рабочий объем / рабочую зону V1, V2, …, Vn (рис 1), выделение данных рабочих объемов / уровней необходимо для правильного программирования шкафа управления насосами и установки датчиков уровня в станции. При расчете глубины КНС, все рабочие объемы и уровни включений насосных агрегатов, в большинстве случаев, находятся ниже отметки подводящего коллектора (на рисунках 1 и 2, расположение подводящего коллектора показано условно).

На основании вышеизложенного преобразуем формулу (1):

Применяя чередование насосов при отключении, программируя контроллер управления насосными агрегатами на следующее чередование насосов: включение 1-го, включение 2-го, …, включение n-го, отключение 1-го, включение 1-го, отключение 2- го, включение 2-го, …, отключение n-го, включение n-го, происходит увеличение времени цикла во столько раз, сколько насосов участвует в чередовании (пример расчета в конце статьи подтверждает данное утверждение). Соответственно, применив данный режим работы насосов, можно уменьшить рабочий объем КНС, разделив его на количество насосов. Так как резервные насосы могут находиться в ремонте, в расчете учитываем только рабочие насосы (n).

Читайте также:  Свистит циркуляционный насос в котле

Преобразуем формулу (3):

Полученная формула (4) рекомендована насосным заводом «Flygt» для расчета требуемого рабочего объема насосных станций [3].

Пример. КНС с максимальной производительностью q max = 1000 м³/ч = 16,67 м³/мин, количество рабочих насосов — 2 шт., расчетное количество пусков насоса в час, время цикла — 10 раз (Т=360 с), диаметр КНС — 3,0 м, минимально расстояние между поплавками 0,3 м. Производительность насосных агрегатов Q1= Q2 = 500 м³/ч = 138,89 л/с = 8,33 м³/мин.

Требуемый рабочий объем КНС по формуле (4) равняется:

Рассмотрим самый неблагоприятный режим работы насосов, определенный ранее на основании анализа работы подобной станции, когда приток в станцию q = Qобщ — Q/2 = 750 м³/ч = 12,5 м³/мин, согласно формулы (2).

  1. Сточные воды q=12,5 м³/мин поступают в приемный резервуар КНС с рабочим объемом V=8,37 м³, уровень жидкости поднимается до отметки «Р1 старт» (рис.2), включается насос «А» производительностью Q1=8,33 м³/мин.
  2. Насосный агрегат &qout;А» не справляется с притоком стоков, происходит наполнение резервуара до отметки «Р2 старт&qout;, за время t1=ΔHS/(q-Q1)=2,12/4,17=0,51 мин, включается насос &qout;В» производительностью Q2=8,33 м³/мин.
  3. Оба рабочих насоса «А» и «В» совместно откачивают рабочий объем V2=V1=6,25 м³ и поступающие сточные воды q до отметки «Р2 стоп», за время t2=V2/(Q1+Q2-q)=6,25/(8,33+8,33-12,5)=1,5 мин, отключается насос «А».
  4. Сточные воды q=12,5 м³/мин продолжают поступать в резервуар, насос «В» не справляется и уровень жидкости поднимается до отметки «Р2 старт», за время t3= V2/(q-Q2)=6,25/(12,5-8,33)=1,5 мин, включается насос «А».
  5. Оба насоса откачивают рабочий объем V2 и поступающие сточные воды q до отметки «Р2 стоп», за время t4=t2=1,5 мин =1,5 мин, отключается насос «В».
  6. Насос «А» не справляется с объемом поступающих сточных вод и уровень жидкости поднимается до отметки «Р2 старт», за время t5= V2/(q-Q1)=6,25/(12,5-8,33)=1,5 мин, включается насос «В».
  7. Оба насоса откачиваю рабочий объем V2 и поступающие сточные воды q до отметки «Р2 стоп», за время t6=t2=1,5 мин, отключается насос «А».
  8. Насос «В» не справляется с объемом поступающих сточных вод и через время t7= t3=1,5 мин, включается насос «А», и т.д.

Выполненный анализ работы рассматриваемой КНС показывает, что время цикла Т (время между последовательными пусками одного насоса) для насоса «А» равняется t1+t2+t3=3,51 мин, при первом его включении, и t4+t5+t6+t7=6 мин для второго и последующих включений. Для насоса «В» время цикла Т=t2+t3+t4+t5=6 мин для первого и последующих включений. Соответственно, насос «А» в первый час работы включится 11 раз, а в последующие часы 10 раз, насос «В» будет включаться 10 раз в час.

  • двигатель насосного агрегата допускает кратковременное превышение номинальной нагрузки;
  • в насосных станция устанавливаются резервные насосы, участвующие при чередовании общего количества насосов и увеличивающие время цикла насосов;
  • вероятность того, что КНС будет работать в самом неблагоприятном для насосов режиме длительное время, когда q = Qобщ — Q/2, ничтожно мала;
  • как правило, в расчетах участвуют не максимальные значения количества пусков насоса в час.

Принимая во внимание изложенное выше, мы можем пренебречь одиннадцатым пуском насоса «А» в первый час его работы. Выполняется основное требование производителей насосного оборудования, а значит, расчет выполнен правильно.

Была рассмотрена работа насосной станции с двумя рабочими насосами, но данный алгоритм работы и расчеты рабочего объема будут справедливы и в станциях с большим числом насосных агрегатов.

Вывод:
использование формулы (4) и предложенной логики работы насосов при расчете объема приемного резервуара канализационных насосных станций с несколькими однотипными рабочими насосами: в несколько раз сокращает требуемый рабочий объем станции; удовлетворяет требованиям актуализированной редакции СНиП 2.04.03-85 [1] и заводов-изготовителей насосов; обеспечивает бесперебойную работу насосных агрегатов на весь срок эксплуатации и сохраняет гарантии изготовителей насосов.

Литература

  1. СП 32.13330.2012. Свод правил. Канализация. Наружные сети и сооружения. Актуализированная редакция СНиП 2.04.03-85.
  2. Дягилев М.А. Расчет емкости приемного резервуара канализационных насосных станций с погружными насосными агрегатами // Водоснабжение и санитарная техника, 2009, №11.
  3. Dеsign recommendations for pump stations with midrange centrifugal Flygt wastewater pumps. ITT Flygt, 02.04.2008.
Читайте также:  Дозатор насоса коммон рейл камаз

Автор статьи:
Дягилев Михаил Аркадьевич, главный инженер ООО «ТРИТОН».
тел.: +7 (846) 205-16-15.
эл. почта: mikhail.dyagilev@stormwater.ru

Подберем индивидуальное решение для вашей задачи. Оставьте заявку, и наш менеджер свяжется с вами.

Источник

Онлайн-калькуляторы для насосов и насосного оборудования

Часто нас, как специалистов, люди просят помочь в правильном подборе насоса. Мы спрашиваем: для чего нужен насос, где будет применяться, какие нужны рабочие параметры и что в итоге хочет получить наш клиент. При получении ответов на данные вопросы, мы начинаем подбирать оборудование, сопоставляя требования клиентов с возможностями различных видов насосного оборудования. Для облегчения нашей работы и правильного подбора необходимого насоса, мы используем специальные таблицы, узкопрофильные программы и рекомендации производителей насосов.

Все эти системы, программы или «калькуляторы» для расчетов, создаются для одного — для верного решения задачи выбора насоса. Каждый, кто умеет правильно сопоставлять данные, может применить их в своей жизни на практике самостоятельно, но лучше, чтобы эту задачу выполняли специально обученные и подготовленные для этого, опытные люди – коллектив Ампики. Обратитесь к профессионалам в компанию Ампика и Вам всегда помогут с правильным выбором. Это сэкономит не только Ваше время, деньги, но и нервы. В помощь тем смелым людям, кто самостоятельно проектирует систему с использованием насосного оборудования, мы создали раздел «онлайн-калькуляторы»:

Универсальный конвертер единиц давления

Расчет времени вакуумирования емкости насосом

А вы знали, что кроме базовой метрической единицы измерения давления — Паскаль, существует еще несколько десятков менее распространенных вариантов? С использование данного конвертера единиц давления, вы без труда сможете перевести величину давления из одних единиц давления, в другие.

Данная программа предназначена для расчета времени вакуумирования емкости (t) заданного объема (V), если известна производительность насоса (S) и требуемое значение вакуума (P1 и P2). Или можно рассчитать производительность насоса (S), если известно время вакуумирования емкости (t), ее объем (V) и требуемое значение остаточного давления (P1 и P2).

Расчет объема ресивера и необходимого вакуума для насоса

Расчет объема гидроаккумулятора

Данная программа поможет вам рассчитать объем ресивера и необходимого вакуума давления, полученного после подключения ресивера к камере.

Программа расчета полного объема водонапорного резервуара (гидроаккумулятора).

Расчет параметров центробежного насоса при изменении частоты вращения

Данный калькулятор поможет вам рассчитать параметры центробежного насоса при изменении часты вращения электродвигателя или вала. Помимо этого, по результатам вычислений будет построен график, по которому можно определить соотношение подачи и напора, при частоте 1, 10, 20, 30, 40 и 50 Гц.

Источник

Расчёт скважинного насоса: формула и пример подробного расчета

Вступление

В прошлой статье серии «Водоснабжение дома своими руками», мы выбирали скважинный насос исходя из общих технических характеристик насосов имеющихся в продаже. Охватить все продающиеся насосы невозможно, но представление, какие бывают насосы, мы получили.

В этой статье, пойдем другим путем. Произведем расчет технических характеристик скважинного насоса исходя их своих потребностей в воде, а также имеющейся скважины.

Еще раз о скважине

Скважина, несомненно, лучший вариант индивидуального водоснабжения дома (читать о выборе источника). В одной из статей сайта я писал, как самостоятельно сделать скважину (тут). Здесь дополню данные о размерах скважин, они имеют непосредственное отношение к расчету скважинного насоса.

Так как скважину бурят бурами основа которых труба, то и размеры стандартных скважин разумно обозначать, как и размеры труб, в дюймах. Можно выделить три стандартных (по практике бурения) размера скважин индивидуального водоснабжения:

  • Скважина в три дюйма (75 мм);
  • Скважина в четыре дюйма (100 мм);
  • Скважина более 4-х дюймов, чаще 110 мм.
  • На сегодня бурят скважины до 150 мм.

В расчете скважинного насоса диаметр скважины нужно привязать к диаметру насоса, ведь по определению, насос нужно опускать в скважину.

Зачем нужен расчет скважинного насоса

Мы прекрасно понимаем, что монтаж насоса в скважину делается не на один сезон. Поэтому, выбрать скважинный насос нужно так, чтобы он, во-первых, смог обеспечить потребности в воде с некоторым запасом, а во-вторых, нужно подобрать так, чтобы насос смог работать в этой скважине, которая тоже имеет свои характеристики.

Расчёт скважинного насоса по шагам

Расчет 1. Диаметр насоса

Скважинный насос это элемент общей системы водоснабжения. Все элементы системы взаимосвязаны и их характеристики должны быть привязаны друг к другу. Согласитесь, нельзя пробурить скважину на воду диаметром 75 мм и купить для неё насос с диаметром корпуса 4 дюйма.

Результат 1. По размеру скважины получаем первый расчетный параметр насоса: его диаметр. Здесь важно помнить, что между корпусом насоса и стенками скважины нужен зазор 10-30 мм.

Расчет 2. Производительность скважинного насоса

Производительностью скважинного насоса называют его способность перекачивать определенное количество литров воды в час или литры в секунду или кубические метры воды в час. Производительность насоса считаем из своих потребностей.

Расчет производительности насоса делается на максимальное нереальное потребление воды. То есть, принимается, что все сантехнические приборы дома будут открыты в течение часа. Полученную сумму кубометров в час умножим на поправочный коэффициент.

Для расчета рекомендую воспользоваться двумя расчетными таблицами. Первая таблица позволит посчитать нереальный (расчетный) расход воды для каждого прибора, который есть в доме и на участке. Считаем в литрах/час.

Во второй таблице в серых графах ищем рассчитанный нереальный расход и смотрим в строке реальный расход воды нужный для выбора насоса.

В таблице указаны данные в литрах в секунду. Эту единицу измерения нужно перевести в кубические метры в час. Для это полученное значение (л/сек) нужно умножить на 3,6 и получить (куб. метр/час).

Пример расчета производительности №1. Приблизительный.

Можно не использовать таблицы и пойти другим путем. Взять за единицу потребления воды каждым членом семьи с запасом на полив летом. 1 человек потребляет в час 0,95-1,0 кубометра воды в час.

По этому варианту расчета для полноценного обеспечения водой семьи из трех человек, нужен насос производительностью не менее 3 кубометров в час.

Пример расчета производительности №2 (по таблицам)

  • Выписываем все приборы с расходом воды;
  • Вписываем их расход по таблице №1;
  • По таблице №2, находим рассчитанный расход воды и смотрим в этой строке реальный расход воды, который и будет соответствовать производительности необходимого насоса.

Расчет3. Учет дебета скважины

Дебет скважины указан в паспорте скважины. По значению дебета определяем глубину установки насоса, она не должна быть выше динамического уровня скважины.

Расчет 4. Напор насоса

Напор насоса это способность насоса поднять воду с определенной глубины и догнать воду до точки распределения.

Академическое определение напора. Напор это прирост энергии потока воды за время её прохождения чрез рабочие полости насоса, выраженный в метрах столба жидкости.

Формула расчета напора (Q) применимая к скважинным насосом не сложная:

  • Qитог: рассчитываемый необходимый напор насоса.
  • Hвысот: перепад высоты от точки подъема воды (установки насоса) до верхней точки водоснабжения.
  • Pпотерь: Коэффициент потерь, учитывает сопротивление которая преодолевает вода при прохождении по трубам. Зависит от материала труб и берется из таблицы3 и 4.

Пример расчета напора насоса

  • Динамический уровень скважины 50 метров;
  • Насос ставим на глубину 48 метров, чтобы его укрывала вода в самом нижнем уровне;
  • Дебет скважины 3 куб. метра;
  • Расстояние от скважины до дома 65 метров, труба пластик 32 мм;
  • Труба по дому 15 метров, труба пластик 25 мм;
  • На трассе: 3 тройника, 2 обратных клапана, 1 запорный кран, два угла 90°.

Прежде всего, считаем потери:

В таблице потерь для пластиковых труб ищем строку с расходом 3 литра/час. Значения в таблице указаны для прямого трубопровода, длиной 100 метров. У нас это расстояние 65 и 15 метров.

Коэффициенты потерь: для трубы 32 мм: К=1,54, для трубы 25 мм:К=2,54. Потери для арматуры: тройник и обратный клапан:4, вентиль и угол 90°:1.

Считаем потери:

Pпотерь= (1,54×65÷100)+(2,54×25÷100)+((3+2)×4)+((1+1)×1)=23,636 (24 метра).

Считаем необходимый напор скважинного насоса:

Q=(48+7)высота+24(потери)+15(напор излив)=94 метра.

Итог: Нам нужен скважинный насос с производительностью 3 куб метра воды в час и напором по паспорту не менее 94 метров.

Расчет 5. Электрическая мощность насоса

Электрическая мощность насоса нужна для расчета кабеля электропитания и расчета защитных электрических устройств. Рассчитывать её не нужно. Достаточно подобрать нужный скважинный насос по напору и производительности и посмотреть в его технических характеристиках потребляемую мощность.

Источник

Техническое оборудование © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.