Меню

Проектирование генератора прямоугольных импульсов



Генераторы импульсов на цифровых КМОП микросхемах.
Онлайн калькулятор расчёта элементов генераторов с симметричной формой выходного сигнала.

На сегодняшнем мероприятии, посвящённом Дню пивовара России, поговорим о радиоаппаратах с самовозбуждением, а конкретно — об устройствах, охваченных цепью положительной обратной связи и позволяющих выдавать на выходе периодические сигналы определённой колебательной природы.

А начнём с самого простого — генераторов прямоугольных импульсов с использованием цифровых КМОП микросхем.
Тема наболевшая: «Исследование разнообразных схемотехнических построений и характеристик генераторов на ИМС структуры КМОП».
О состоянии дел на участке генераторостроительного цеха и изыскании внутренних резервов «доложит нам начальник транспортного цеха».

Опишем несколько схемных решений генераторов прямоугольных импульсов, построенных на различных микросхемах серии К561, или каких-либо им подобным.
Все представленные схемы могут быть реализованы на элементах 2И—НЕ (ЛА7), 2ИЛИ—НЕ (ЛЕ5), триггерах Шмитта (ТЛ1), или инверторах (ЛН2).

В качестве докладчика выступил и поделился своими знаниями в журнале Радио №1 (2000г) господин С.Елимов — достойный сын столицы славной, города-героя Шупашкар (по-нашему — Чебоксары).

Генератор, изображённый на Рис.1 сохраняет работоспособность при снижении напряжения питания до 2В. При изменении значения Uпит от 5 до 15В уход частоты в сторону увеличения составляет примерно 10%.
Скважность импульсов близка к двум при любом напряжении питания.
В результате разогрева корпуса микросхемы частота несколько уменьшается (на 4% при 85°С).
С погрешностью, не превышающей 10%, можно вычислить частоту генерации данной схемы — F = 0,48/(R1×C1) .

Несколько лучшим параметром стабильности обладает генератор, выполненный на трех логических элементах и представленный на Рис.2.
Формула для вычисления частоты генерации данной схемы F = 0,54/(R1×C1) .

Обе схемы обладают весомыми величинами потребления тока, увеличивающимся с повышениями напряжения питания и частоты генерации. Значения эти находятся в диапазоне — от единиц до десятков мА.

Подобные по структуре генераторы можно выполнить и на одном элементе — триггере Шмитта (Рис.3).
При напряжении питания, близком к максимальному, они весьма стабильны по частоте.
Кроме того, они исключительно экономичны — при напряжении питания менее 6 В ток потребления составляет всего несколько десятков микроампер.
Частота генерации приведённой на Рис.3 схемы
F = 0,59/(R1×C1) .

Скважность импульсов приведённых генераторов близка к двум, однако из-за несимметричности входных защитных цепей некоторых типов микросхем возможно некоторое отклонение формы выходных сигналов от меандра.
Если требуется иметь на выходе идеально симметричные импульсы, то после схемы генератора следует поставить триггер — делитель частоты на 2, либо использовать симметричный мультивибратор (Рис.4).
Формула для вычисления частоты генерации данной схемы
F = 0,50/(R1×C1) .

Как не прискорбно, но это факт — стабильность колебаний RC генераторов невысока.

На Рис.5 показана схема простейшего LC-генератора. LC-цепь сдвигает фазу выходного сигнала элемента на 180°, в результате чего происходит самовозбуждение генератора.
Такие генераторы хорошо работают на повышенных значениях частоты, мягко возбуждаются и отличаются высокой температурной стабильностью.
Для устойчивой работы генератора величина волнового сопротивления LC-контура не должна быть менее 2кОм.
Частота генерации практически совпадает с резонансной частотой LC-контура и описывается стандартной формулой F= 1/2π√ LС .


Рис.1

Рис.2

Рис.3

Рис.4

Рис.5

Формулы для расчёта частоты рассматриваемых генераторов соответствуют напряжению питания 5В и температуре окружающей среды 25°С.
Нагрузочная способность генераторов такая же, как у элементов применяемых серий микросхем.
Нижний предел сопротивления резистора R1 соответствует приблизительной величине — не менее 1кОм, верхний — десятки МОм.

«Спасибо начальнику транспортного цеха! У нас есть вопросы к докладчику?»

Вопросов к докладчику не имеем, можно переходить к таблице для расчёта номиналов элементов генератора, исходя из заданной частоты генерации.

Схему, приведённую на Рис.5, из калькулятора вычёркиваем по причине существования ранее разработанной таблицы ссылка на страницу, позволяющей рассчитать элементы резонансного LC-контура для высоких и низких частот. Там же высчитывается и величина волнового (оно же — характеристическое) сопротивления получившегося LC-контура.

Для остальных схем, для получения на выходе предсказуемой формы сигнала со скважностью близкой к двум, рекомендую выбирать значение сопротивления резистора R1 от 10к и выше.

ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ ГЕНЕРАТОРОВ НА КМОП МИКРОСХЕМАХ.

Выбор схемы генератора &nbsp

Сопротивление резистора R1 (кОм)

Частота генератора F Ёмкость конденсатора С1 Период повторения импульсов t

Все представленные характеристики генераторов получены в результате экспериментов вышеуказанного уважаемого автора с конкретными образцами микросхем. С другими экземплярами микросхем характеристики могут быть несколько отличными.

Скважность импульсов описанных генераторов близка к двум, ну а генераторы импульсов с раздельной установкой длительности импульсов и паузы между ними рассмотрим на следующей странице.

Источник

Генераторы импульсов

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц. Здесь приводятся простые схемы генераторов, в том числе на элементах цифровой «логики», которые широко используются в более сложных схемах как частотозадающие узлы, переключатели, источники образцовых сигналов и звуков.

На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 — напряжение низкого уровня; при нажатой кнопке — наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор — цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток — необходимость использования конденсатора значительной емкости.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15. 17 В и токе 20. 50 мА.

В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 — длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1. 2 мкФ. Сопротивления резисторов R2, R3 — 10. 15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема — К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1. 10 000 Гц. Микросхема — К561ЛН2.

Если нужна высокая стабильность генерируемой частоты, то такой генератор можно сделать «кварцованным» — включить кварцевый резонатор на нужную частоту. Ниже показан пример кварцованного генератора на частоту 4,3 МГц:

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема — К561ЛН2.

Цифровые микросхемы в генераторах взаимозаменяемы в большинстве случаев и можно использовать в одной и той же схеме как микросхемы с элементами «И-НЕ», так и «ИЛИ-НЕ», или же просто инверторы. Вариант таких замен показан на примере рисунка 5, где была использована микросхема с инверторами К561ЛН2. Точно такую схему с сохранением всех параметров можно собрать и на К561ЛА7, и на К561ЛЕ5 (или серий К176, К564, К164), как показано ниже. Нужно только соблюдать цоколевку микросхем, которая во многих случаях даже совпадает.

Если требуется повысить нагрузочную способность какого либо узла (чтобы, например, подключить динамик или другую нагрузку), можно применить на выходе усилитель на транзисторе, как в схеме на рис. 6, или же включить несколько элементов микросхемы параллельно, как показано на рисунке ниже:

Универсальная печатная макетная плата для двух микросхем. На таких платах удобно собирать несложные схемы с небольшим количеством деталей, как, например, приведенные в этой статье. Детали паяются к контактным площадкам и при необходимости соединятся перемычками. Размеры платы 100 х 55 мм.

На рисунке ниже приводится цоколевка некоторых широко применяемых цифровых логических микросхем КМОП — технологии с элементами «И-НЕ», «ИЛИ-НЕ» и инверторов. Микросхемы серий К564, К176 имеют аналогичную цоколевку, цоколевка же микросхем серии К155 отличается от указанной (но такие уже давно не применяются). Питание указанных микросхем, как уже говорилось выше, может быть от 3 до 15 В (кроме серии К176, которая более критична к напряжению питания и нормально работает при 9В).

Источник

Проектирование и расчет генератора прямоугольных импульсов на ИМС серии К533

Страницы работы

Содержание работы

ПРОЕКТИРОВАНИЕ И РАСЧЕТ ГЕНЕРАТОРА ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ

НА ИМС СЕРИИ К533

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Частота прямоугольных импульсов – F = 10 МГц;

Скважность импульсов – S = 2;

Использовать ИМС серии К533;

Выходные импульсы генератора должны быть ориентированы на подключение логических схем серии К533.

  • Выбор или составление принципиальной схемы генератора.
  • Расчет пассивных и активных элементов схемы.
  • Расчет основных показателей генератора.

1. ПРИНЦИПИАЛЬНАЯ СХЕМА ГЕНЕРАТОРА

В качестве генератора прямоугольных импульсов (ГПИ) выбираем распространенную схему мультивибратора на логических элементах – инверторах [1, рис.264]:

Это обычная схема мультивибратора на инвертирующих логических элементах, в которую включены разрядные диоды VD1 и VD2 для ускорения разряда конденсаторов и получении готовности схемы к выработке следующего импульса. Длительность импульса в такой схеме [1, стр.264]:

(1)

Где U 1 ,U 0 – напряжение логической единицы и логического нуля для используемых ИМС, Uпор – соответствующий порог переключения.

Длительность пауз между импульсами равна [1, стр.264]:

(2)

Для формирования прямоугольных импульсов со скважностью S = 2 необходимо выполнения условия:

(2)

В нашем случае выбираем схему симметричного мультивибратора, для которого выполняются условия:

(3)

Такой мультивибратор будет всегда давать на выходе симметричные импульсы – со скважностью S = 2, а период следования импульсов будет равен:

(4)

То есть, для получения генерации прямоугольных импульсов заданной частоты F = 1/T можно выбрать некоторый номинал емкости конденсаторов С, а затем подобрать номиналы сопротивлений R исходя из условия:

(5)

Выбранная схема генератора рис.1 обладает существенным недостатком для практических применений – при подсоединении нагрузки в такой схеме из-за обратной связи может меняться частота генерации, амплитуда и нарушаться устойчивость генерации. Для устранения этих эффектов обычно используют дополнительный – буферный каскад усиления, в качестве которого в данном случае удобно использовать еще один инвертор. С учетом выбранной серии ИМС К533, корпусов ЛН1, содержащих 6 инверторов, получаем следующую практическую схему разрабатываемого генератора:

Питание ИМС ЛН1 выбранной серии осуществляется на вывод 14, вывод 7 – общий.

2. РАСЧЕТ ПАССИВНЫХ И АКТИВНЫХ ЭЛЕМЕНТОВ СХЕМЫ

Напряжение питания микросхем выбранной серии UП = 5 В, напряжение логической единицы на выходе схем U 1 = 3,5 В, логического нуля U 0 = 0,3 В, пороговое напряжение переключения Uпор = 1,0 В [2]. Выбираем емкость конденсаторов:

(6)

Находим соответствующую величину сопротивлений резисторов:

(7)

Далее выбираем импульсные германиевые диоды VD1, VD2 типа Д311 [3], они обладают относительно малой емкостью, высоким быстродействием и малым прямым напряжением открывания перехода.

3. РАСЧЕТ ОСНОВНЫХ ПОКАЗАТЕЛЕЙ ГЕНЕРАТОРА

Напряжение питания генератора определяется напряжением питания микросхемы микросхем выбранной серии UП = 5 В, ток питания – не более IП = 6 мА, коэффициент разветвления составляет Kр = 10, то есть, допускается подключение до 10 входов схем выбранной серии. Максимальное выходное напряжение генератора равно напряжению логической единицы на выходе схем Umax = U 1 = 3,5 В, минимальное напряжение равно напряжению логического нуля Umin = U 0 = 0,3 В. Частота генерации прямоугольных импульсов скважности 2 равна F = 10 МГц.

В разработанном генераторе использовано три инвертора из шести имеющихся в одном корпусе, поэтому можно либо собрать на одной микросхеме два подобных генератора, либо использовать оставшиеся инверторы для увеличения коэффициента разветвления генератора по выходу. Если задействовать три оставшиеся инвертора в качестве буферных элементов, то коэффициент разветвления генератора по выходу возрастет с 10 до соответствующей величины 4×10 = 40.

ЛИТЕРАТУРА

1. Быстров Ю.А., Мироненко И.Г. Электронные цепи и микросхемотехника. – М.: Высшая школа, 2002.

2. Цифровые интегральные микросхемы: Справочник. / М.И. Богданович, И.Н. Грель, С.А. дубина и др. 2-е изд., перераб. и доп. – Минск: Полымя, 1996.

3. Справочник: Диоды высокочастотные. Диоды импульсные. Оптоэлектронные приборы. Под ред. Голомедова А.В. М.: Радио и связь, 1994.

Источник

Читайте также:  Сколько стоит генератор для ваз 2105

Техническое оборудование © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.