Меню

Принцип действия генераторов постоянного тока самовозбуждением



Принцип и условия самовозбуждения генератора постоянного тока параллельного возбуждения

У генератора параллельного возбуждения обмотка якоря и обмотка возбуждения соединены параллельно, а посторонний источ­ник постоянного тока отсутствует.Принцип самовозбуждения: при вращении генератора приводным двигателем в обмотке якоря наводится небольшая э. д. с. ( порядке 2 — 3 % от номинального напряжения ), называемая э. д. с. остаточного намагничивания. Она обусловлена небольшим магнитным потоком остаточного намагни­чивания, создаваемым внутримолекулярными токами ферромагнитных элементов магнитной цели электрической машины. Под действием э. д. с остаточного намагничивания по обмотке ОВ генератора параллель­ного возбуждения протекает небольшой ток возбуждения, который создает свой небольшой магнитный поток, который, складываясь с потоком остаточного намагничивания, увеличивает общий магнитный поток машины. После­дний наводит в обмотке якоря э. д. с. Большую по сравнению с э. д. с. остаточного намагничивания, которая посылает больший ток в обмотку возбуждения, под действием которого общий магнитный поток машины еще более увеличивается к наводит еще большую э. д. с. якоря. Описанный процесс последовательного взаимного увеличения магнитного потока и э. д. с. генератора параллельного возбуждения продолжается до полного самовозбуждения машины, т. е. до того момента, когда значение э. д. с. яко­ря не станет равным полному значению напряжения холостого хода на его зажимах ( при разомкнутом рубильнике Р ). При замыкании рубильника Р под действием этой э. д. с по сопротивлению нагрузки Rнагр, потечет ток нагрузки I= IЯ +IВ

Реакция якоря генератора постоянного тока и ее влияние на внешнюю характеристику.

Под реакцией якоря понимают явление воздействия магнитного поля, созда­ваемого током якоря, на магнитное поле главных полюсов. В современных машинах постоянного тока реакция якоря всегда действует на основное поле размагничивающим образом. Поэтому магнитный поток генератора постоянного тока Ф при размагничивающей реакции якоря меньше основного магнитного потока Ф на некоторую величину, обусловленную размагничивающим действием магнитного поля якоря. Отсюда и ЭДС якоря под нагрузкой меньше ЭДС холостого хода машины. Т.е. под нагрузкой напряжение на зажимах генератора меньше напряжения холостого хода из-за влияния падения напряжения на сопротивлении цепи якоря и размагничивающего действия реакции якоря: .

Конструкция и принцип действия синхронных машин с электромагнитным возбуждением. Принцип обратимости.

Устройство синхронной машины отличается от асинхронной конструкцией ротора, который представляет собой электромагнит постоянного тока, он имеет обмотку возбуждения- создает основное магнитное поле. Обмотка якоря (статора)-запитывает нагрузку. Статор состоит из литой станины с крепежными лапами; внутри станины впрессован магнитный сердечник, выполненный из листов электротехнической стали. В сердечнике вырублены пазы, внутри которых 3-х фазная медная обмотка, которая соединяется либо звездой, либо треугольником. На станине расположена коробка выводов, торцы станины покрываются подшипниковыми щитами, внутри которых закреплены подшипники. Принцип работы заключается в том, что частота вращения ротора находится в строгом соотношении с частотой питающего тока. Вследствие обратимости электрических машин, синхронные могут работать как

Существуют следующие системы возбуждения:

1) Система независимого возбуждения- обмотка возбуждения запитывается от независимого источника питания.

2) Система самовозбуждения:

-параллельное (ОЯ и ОВ соединены параллельно)-последовательное (ОЯ и ОВ- последовательно)-смешанное (часть ОВ включается параллельно, другая- последовательно)

Дата добавления: 2018-04-04 ; просмотров: 1460 ; Мы поможем в написании вашей работы!

Источник

Процесс самовозбуждения генераторов постоянного тока

Процесс самовозбуждения основан на явлении остаточного намагничивания ферромагнитных материалов, из которых выполнена магнитная цепь машины. При изготовлении генераторов главные полюса машины специально намагничивают постоянным током. Эта процедура обеспечивает наличие в машине небольшого остаточного магнитного потока, значение которого составляет 2. 3 % от номинального значения основного потока. Рассмотрим суть процесса на примере генератора с параллельным способом возбуждения. Самовозбуждение генератора осуществляется при отсутствии тока в цепи потребителя, т. е. в режиме холостого хода. В обмотке вращаюшегося якоря наводится остаточная , которая и приложена к зажимам обмотки возбуждения. Под действием остаточной в цепи обмотки возбуждения протекает ток.который создает дополнительный магнитный поток. Направление дополнительного потока должно совпадать по направлению с остаточным магнитным потоком машины, т. е. усиливать его. Увеличение суммарного магнитного потока приводит к возрастанию ЭДС в обмотке якоря, а следовательно, и напряжения на зажимах генератора. Процесс самовозбуждения заканчивается, когда падение напряжения в обмотке возбуждения становится равным ЭДС якоря. По своему виду характеристика холостого хода и регулировочная характеристика у генератора с параллельным возбуждением не отличаются от аналогичных характеристик машины, работающей с независимым возбуждением. Внешняя характеристика генератора с параллельным возбуждением проходит ниже соответствующей характеристики генератора с независимым возбуждением. Это объясняется уменьшением тока возбуждения при снижении напряжения с ростом тока нагрузки. В номинальном режиме снижение напряжения составляет 10. 15 % от номинального значения. Генераторы последовательного возбуждения не нашли широкого применения по причине непостоянства выходного напряжения при изменении тока нагрузки. По этой причине их характеристики в данном курсе не рассматриваются. Генераторы смешанного возбуждения применяют в установках небольшой мощности, где желательно избежать значительного изменения напряжения при отключениях или подключениях отдельных потребителей. Две обмотки возбуждения такого генератора соединяют так.чтобы их магнитные потоки складывались. Путем соответствующего подбора числа витков последовательной обмотки можно скомпенсировать падение напряжения на внутреннем сопротивлении генератора и от действия реакции якоря и обеспечить необходимое напряжение в определенных пределах изменения тока нагрузки.

Читайте также:  Не работает генератор маз

Способ возбуждения магнитного поля главных полюсов генераторов, при котором обмотка главных полюсов получает питание от обмотки якоря (ротора). (В отличие от самовозбуждения, при независимом возбуждении обмотки главных полюсов питают от постороннего источника тока.) Наиболее часто самовозбуждение используется в генераторах постоянного тока. При пуске генератора с самовозбуждением начальный ток в обмотке возбуждения возникает за счёт ЭДС, наводимой в обмотке якоря остаточным магнитным полем главных полюсов. Для поддержания самовозбуждения необходимо, чтобы начальный ток усиливал это поле. Добавочный магнитный поток увеличивает ЭДС якоря и, как следствие, ток в обмотках главных полюсов. Однако из-за магнитного насыщения магнитопровода одинаковым приращениям увеличивающегося тока возбуждения соответствуют всё меньшие приращения магнитного потока. Процесс самовозбуждения продолжается до тех пор, пока ЭДС якоря превосходит падение напряжения в обмотке возбуждения. При определённой величине магнитного потока наступает электрическое равновесие, и дальнейшее повышение магнитного потока, ЭДС якоря и тока возбуждения прекращается. Самовозбуждение может осуществляться при величине сопротивления обмотки возбуждения, не превышающей известного предельного значения, зависящего от электрических параметров генератора.

Применяют самовозбуждение с параллельным, последовательным и смешанным (параллельно-последовательным) включением обмоток главных полюсов относительно обмотки якоря. Для создания остаточного магнитного потока в машине с самовозбуждением, по какой-либо причине утратившей остаточное намагничивание главных полюсов, по обмотке возбуждения пропускают ток нужного направления, который получают от постороннего источника.

25.От чего зависит скорость вращения двигателя постоянного тока и как ее можно регулировать?

Из последнего выражения видно, что скорость вращения двигателя постоянного тока пропорциональна приложенному напряжению и обратно пропорциональна магнитному потоку.

Изменяя напряжение, подводимое к двигателю, а также изменяя ток возбуждения двигателя при помощи регулировочного реостата, включенного в цепь возбуждения, можно изменять скорость вращения двигателя.

Источник

Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, w t – угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Читайте также:  Реле регулятора напряжения в генераторе рено меган

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.
Читайте также:  Распиновка проводов генератора камаз евро

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Источник