Меню

Один насос заполняет бассейн за 10 часов



Один насос заполняет бассейн за 10 часов

Первый и второй насосы наполняют бассейн за 9 минут, второй и третий — за 14 минут, а первый и третий — за 18 минут. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Наименьшее общее кратное чисел 9, 14 и 18 равно 126. За 126 минут первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 14 + 9 + 7 = 30 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 15 бассейнов за 126 минут, а значит, 1 бассейн за 8,4 минуты.

Приведём другое решение.

За одну минуту первый и второй насосы заполнят 1/9 бассейна, второй и третий — 1/14 бассейна, а первый и третий — 1/18 бассейна. Работая вместе, за одну минуту два первых, два вторых и два третьих насоса заполнят

бассейна.

Тем самым, они могли бы заполнить бассейн за 21/5 минуты или за 4,2 минуты. Поскольку каждый из насосов был учтен два раза, в реальности первый, второй и третий насосы, работая вместе, могут заполнить бассейн за 8,4 минуты.

Приведем алгебраическое решение Тимура Алиева.

Пусть x — производительность первого насоса, y — производительность второго насоса, z — производительность третьего насоса. Тогда

Сложив уравнения, получим

Тогда при совместной работе всех трех насосов время заполнения бассейна составит минуты.

Источник

Один насос заполняет бассейн за 10 часов

Две трубы наполняют бассейн за 3 часа 36 минут, а одна первая труба наполняет бассейн за 6 часов. За сколько часов наполняет бассейн одна вторая труба?

Пусть объем бассейна равен 1. Обозначим и — скорости наполнения бассейна первой и второй трубой, соответственно. Две трубы наполняют бассейн за 3 часа 36 минут:

По условию задачи одна первая труба наполняет бассейн за 6 часов, то есть Таким образом,

Тем самым, вторая труба за час наполняет 1/9 бассейна, значит, вторая труба наполняет этот бассейн за 9 часов.

Приведем другое решение.

Первая труба за час наполняет 1/6 бассейна, значит, за 3 ч 36 мин = 3,6 часа она заполнит 0,6 бассейна. Следовательно, вторая труба за 3,6 часа заполнит 0,4 бассейна. Поэтому весь бассейн она заполнит за время 3,6:0,4 = 9 часов.

Источник

Один насос заполняет бассейн за 10 часов

Первый и второй насосы наполняют бассейн за 9 минут, второй и третий — за 14 минут, а первый и третий — за 18 минут. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Наименьшее общее кратное чисел 9, 14 и 18 равно 126. За 126 минут первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 14 + 9 + 7 = 30 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 15 бассейнов за 126 минут, а значит, 1 бассейн за 8,4 минуты.

Читайте также:  Педролло насосы в челябинске

Приведём другое решение.

За одну минуту первый и второй насосы заполнят 1/9 бассейна, второй и третий — 1/14 бассейна, а первый и третий — 1/18 бассейна. Работая вместе, за одну минуту два первых, два вторых и два третьих насоса заполнят

бассейна.

Тем самым, они могли бы заполнить бассейн за 21/5 минуты или за 4,2 минуты. Поскольку каждый из насосов был учтен два раза, в реальности первый, второй и третий насосы, работая вместе, могут заполнить бассейн за 8,4 минуты.

Приведем алгебраическое решение Тимура Алиева.

Пусть x — производительность первого насоса, y — производительность второго насоса, z — производительность третьего насоса. Тогда

Сложив уравнения, получим

Тогда при совместной работе всех трех насосов время заполнения бассейна составит минуты.

Источник

Один насос за 5 часов наполняет 1/3 часть пустого бассейна а другой опорожняет 1/2 часть заполненного бассейна за 10 часов . За сколько часов заполнится пустой бассейн если оба насоса будут работать одновременно?

Пусть x — количество яблок, которое стало, тогда ((x+6)*3/2+6) яблок было. Зная, что количество яблок, которое было в два раза больше чем, сколько стало, составим и решим уравнение.

Значит, в корзине, после махинаций стало 30 яблок, вычислим, сколько было (должно получиться в 2 раза больше):
(30+6)*3/2+6=36*3/2+6=54+6=60

Ответ: 60 яблок было в корзине

Здесь всё просто. Смотришь на оба слагаемых и сверяешь с остальными:

В первом и втором примерах есть число 782, значит, большее из них то, к которому прибавим большее число. Это 943.
В первом и третьем общее число 659. Большее первое, так как к нему прибавляем 782.
Во втором и четвертом общее число 943. Большее четвертое, т.к. к нему прибавляем 1105.
В четвертом и шестом общее число 1105. Большее шестое, т.к. к нему добавляем 2563. Заодно эта сумма (шестая) является и самой большой, т.к. оба ее члена являются самыми большими числами.
А пятая сумма наименьшая, т.к. оба ее члена — самые маленькие числа.
Ответ: 129+288; 288+659; 782+659; 782+943; 943+1105; 1105+2563.

Источник

Один насос заполняет бассейн за 10 часов

Первый и второй насосы наполняют бассейн за 10 минут, второй и третий — за 15 минут, а первый и третий — за 24 минуты. За сколько минут три эти насоса заполнят бассейн, работая вместе?

Читайте также:  Ремни для насоса ко 503

За одну минуту первый и второй насосы заполнят 1/10 бассейна, второй и третий — 1/15 бассейна, а первый и третий — 1/24 бассейна. Работая вместе, за одну минуту два первых, два вторых и два третьих насоса заполнят

бассейна.

Тем самым, они могли бы заполнить 5 бассейнов за 24 минуты. Поскольку каждый из насосов был учтен два раза, первый, второй и третий насосы, работая вместе, могут заполнить 5 бассейнов за 48 минут. Значит, один бассейн они заполнят за минуты.

Первый и второй насосы наполняют бассейн за 9 минут, второй и третий — за 12 минут, а первый и третий — за 18 минут. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Наименьшее общее кратное чисел 9, 12 и 18 равно 36. За 36 минут первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 4 + 3 + 2 = 9 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 4,5 бассейна за 36 минут, а значит, 1 бассейн за 8 минут.

Приведём другое решение.

За одну минуту первый и второй насосы заполнят 1/9 бассейна, второй и третий — 1/12 бассейна, а первый и третий — 1/18 бассейна. Работая вместе, за одну минуту два первых, два вторых и два третьих насоса заполнят

бассейна.

Тем самым, они могли бы заполнить бассейн за 4 минуты. Поскольку каждый из насосов был учтен два раза, в реальности первый, второй и третий насосы, работая вместе, могут заполнить бассейн за 8 минут.

Первый и второй насосы наполняют бассейн за 10 минут, второй и третий — за 15 минут, а первый и третий — за 18 минут. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Наименьшее общее кратное чисел 10, 15 и 18 равно 90. За 90 минут первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 9 + 6 + 5 = 20 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 10 бассейнов за 90 минут, а значит, 1 бассейн за 9 минут.

Приведём другое решение.

За одну минуту первый и второй насосы заполнят 1/10 бассейна, второй и третий — 1/15 бассейна, а первый и третий — 1/18 бассейна. Работая вместе, за одну минуту два первых, два вторых и два третьих насоса заполнят

бассейна.

Тем самым, они могли бы заполнить бассейн за 9/2 минуты или 4,5 минуты. Поскольку каждый из насосов был учтен два раза, в реальности первый, второй и третий насосы, работая вместе, могут заполнить бассейн за 9 минут.

Читайте также:  Можно ли вернуть водяной насос

Первый и второй насосы наполняют бассейн за 9 минут, второй и третий — за 14 минут, а первый и третий — за 18 минут. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Наименьшее общее кратное чисел 9, 14 и 18 равно 126. За 126 минут первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 14 + 9 + 7 = 30 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 15 бассейнов за 126 минут, а значит, 1 бассейн за 8,4 минуты.

Почему мы прибавляем 14+9+7? Откуда взялось число 7?

Поделите 126 последовательно на производительность насосов.

Первый и второй насосы наполняют бассейн за 6 минут, второй и третий — за 7 минут, а первый и третий — за 21 минуту. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Наименьшее общее кратное чисел 6, 7 и 21 равно 42. За 42 минуты первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 7 + 6 + 2 = 15 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 7,5 бассейнов за 42 минуты, а значит, 1 бассейн за 5,6 минут.

Первый и второй насосы, работая вместе, наполняют бассейн за 90 минут, второй и третий, работая вместе, — за 140 минут, а первый и третий, работая вместе, — за 180 минут. За сколько минут заполнят бассейн все три насоса, работая вместе?

Наименьшее общее кратное чисел 90, 140 и 180 равно 1260. За 1260 минут первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 14 + 9 + 7 = 30 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 15 бассейнов за 1260 минут, а значит, 1 бассейн за 84 минуты.

Приведём другое решение.

За одну минуту первый и второй насосы заполнят 1/90 бассейна, второй и третий — 1/140 бассейна, а первый и третий — 1/180 бассейна. Работая вместе, за одну минуту два первых, два вторых и два третьих насоса заполнят

бассейна.

Тем самым, они могли бы заполнить бассейн за 210/5 минуты или за 42 минуты. Поскольку каждый из насосов был учтен два раза, в реальности первый, второй и третий насосы, работая вместе, могут заполнить бассейн за 84 минуты.

Источник