Меню

Каково назначение генератора развертки в электронном осциллографе



Генератор развертки

Основным назначением осциллографа является воспроизведение на его экране формы кривых переменных напряжений, т.е. получение графиков U (t) или, как говорят, развертки напряжений по времени.

Если исследуемое переменное напряжение

подается на вертикальные отклоняющие пластины, то световое пятно на экране будет совершать колебания по закону

При малых частотах на экране будет видна вертикально колеблющаяся светящаяся точка. При больших частотах, вследствие световой инерции экрана и способности человеческого глаза сохранять некоторое время (

0,1 с) полученное световое восприятие, на экране .будет видна неподвижная вертикальная линия. Для того, чтобы получить развертку Uy по времени, на горизонтально отклоняющие пластины подают пилообразное напряжение, перемещающее луч по горизонтали. Период пилообразного напряжения состоит из двух частей: Dt1 — времени линейного нарастания напряжения и соответственно перемещения луча по экрану слева направо (прямой ход) и Dt2 — времени обратного хода луча, в течение которого напряжение быстро возвращается к исходному значению.

Почему нужно линейное нарастание напряжения? Согласно (7) x = jx Ux и при линейной зависимости U(t) уравнение смещения X в линейной части пилы имеет вид

где С1 и С2. — некоторые постоянные, т.е. ось X в этом случае является осью времени с линейным масштабом.

На рис. 4 рассмотрен случай одновременной подачи на отклоняющие пластины Y — исследуемого напряжения, на отклоняющие пластины X — пилообразного напряжения той же частоты, что и у исследуемого. В результате сложения движений луча по горизонтали и по вертикали на экране между точками 0 и 10 воспроизводится большая часть кривой напряжения Uу . Небольшая часть этой кривой, приходящаяся на время обратного хода луча Dt2, вызывает появление между точками 10 и 12 линии обратного хода, мешающей наблюдению осциллограммы. Для более полного воспроизведения исследуемой кривой стремятcя уменьшить Dt2, a мешающий обратный ход луча гасят, подавая на время Dt2 отрицательный импульс на управляющий электрод (модулятор) ЭЛТ. Если период развертывающего пилообразного напряжения кратен периоду исследуемого, например, больше его в nраз, то на экране получится изображение n полных колебаний.

t

При неравенстве и некратности периодов кривая на экране может двигаться, либо быть устойчивой, но определить форму исследуемого напряжения в этом случае трудно.

Источником пилообразного напряжения является генератор развертки. Частоту генератора пилообразного напряжения в осциллографах можно изменять в широких пределах. При ручной регулировке поддержать строгое равенство периодов напряжений Ux и Uу трудно, поэтому осциллографы снабжаются автоматическим устройством для синхронизации пилообразного напряжения с исследуемым. Осциллографы с генераторами непрерывной развертки непригодны для исследования кратковременных импульсов, длительность которых значительно меньше периода их повторения. На экране такие импульсы будут наблюдаться в виде узких вертикальных выбросов, форма которых неразличима. Поэтому в состав универсальных осциллографов включают генераторы ждущей развертки, которые могут длительное время находиться в режиме ожидания и вырабатывать одиночные импульсы пилообразного напряжения при каждом воздействии на них сигналов запуска. В качестве сигналов запуска могут использоваться и исследуемые импульсы. Таким образом, ждущая развертка позволяет исследовать кратковременные, а также одиночные и не периодически повторяющиеся импульсы.

Дата добавления: 2015-02-13 ; просмотров: 1869 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Генераторы развертки. Назначение. Схема. Синхронизация генераторов развертки

Для получения на экране осциллографа неподвижного изображения исследуемого сигнала на вертикальные отклоняющие пластина подается напряженнее линейно изменяющееся во времени (ЛИН). Это напряжение генерируется в электронном осциллографе генератором развертки.

Рис. 2.12. График ЛИН

Для обеспечения неподвижности изображения генератор синхронизируется исследуемым процессом. Типичный график ЛИН показан на рис.2.12. Такое напряжение U(t) характеризуется следующими параметрами:

Длительностью прямого хода Тпр периодом повторения Тр, длительно­стью обратного хода Тобр, временем восстановления. TУ, амплитудой Um и линейностью прямого хода bР:

, (2.16)

В общем случае генераторы развертки осциллографа должны генерировать напряжение с высокой линейностью прямого хода, малым временем обратного хода, иметь малое время восстановления, допускать возможность синхронизации их работы, иметь высокий к.п.д. использования напряжения источника питания.

Генераторы разверток осциллографа делят: по скорости изменения ЛИН – на генераторы медленной развертки (Тр=10с – 20мс); средней скорости развертки (Тр = 0,1с –1мкс) и быстрой развертки (Тр

Рис. 2.13, б. Генератор с последовательным включением коммутирующего элемента
Рис. 2.13, а. Генератор с параллельным включением коммутирующего элемента

В первой схеме (Рис. 2.13,а) элемент, запасающий энергию элект­рического тока во время прямого хода, заряжается от источника Е, а в течение обратного хода разряжается. Во второй схеме (Рис. 2.13,б) этот элемент во время прямого хода разряжается через разрядную цепь, а во время обратного хода быстро заряжается через коммутирующий элемент. Для синхронизации имеется возможность управлять моментом начала нового периода работы генератора подачей синхронизирующего импульса, например, на коммутирующий элемент.

В настоящее время предложено большое количество схем генераторов ЛИН. Характерным для большинства из них является наличие емкостной интегрирующей цепи. Для получения возможно более линейного напряжения на выходе такого генератора стараются тем или иным способом получить, возможно, более постоянным ток заряда емкости. В этом случае

, (2.17)

если i = const, то UЛИН(t) = U ± Kt.

Постоянство зарядного тока можно получить применением высокого по сравнению с Um напряжения для заряда емкости, т. е. использованием для формирования ЛИН только начального участка экспоненциального напряжения (основной недостаток такой схемы – малый к.п.д. использования напряжения источника питания); применением токостабилизирующих двухполюсников и компенсационных методов с использованием положительной и отрицательной обратных связей. В современных осциллографах генераторы ЛИН, построенные по одному из перечисленных способов, управляются прямоугольными импульсами, длительность которых равна ТП. Для этой цели в каждом генераторе развертки имеется управляющее устройство УУ.

Усилитель X
Генератор пилообразных сигналов
Устройство синхронизации и запуска
Мультивиб-ратор

Рис. 2.14. Структурная схема генератора развертки с мультивибратором управления

В схеме УУ (рис.2.14) с мультивибратором в ждущем или автоколебательном режиме он вырабатывает прямоугольные импульсы, которые используются для управления глин. В ждущем режиме мультивибратор запускается короткими импульсами, поступающими от устройства синхронизации и запуска. В непрерывном режиме (периодическая развертка) мультивибратор синхронизируется схемой синхронизации с исследуемым сигналом. Для того, чтобы размах um ЛИН не менялся при переключении длительности развертки в генераторе, одновременно переключают время, задающее элементы мультивибратора и глин.

В схеме УУ с триггером (рис. 2.15) генератор развертки работает в ждущем режиме. Изменяя режим работы УУ с помощью резистора «стабильность», триггер можно превратить в управляющее устройство с одним устойчивым состоянием, которое соответствует прямому ходу развертки, которая в этом случае работает в непрерывном режиме.

Триггер
Усилитель X
Генератор пилообразных сигналов

Вход Выход

Устройство синхронизации и запуска

Рис. 2.15. Структурная схема генератора развертки с триггером

Генератор ждущей развертки позволяет устанавливать длительность прямого хода, переключая только времязадающие элементы глин. Длительность импульсов УУ устанавливается автоматически благодаря триггеру. Импульс, поступающий от устройства синхронизации и запуска, переводит триггер из исходного состояния в рабочее. Линейно изменяющееся напряжение глин подается на сравнивающее устройство, выходной сигнал которого в момент достижения ЛИН определенного уровня переводит триггер в исходное состояние, после чего прекращается прямой ход развертки. На выходе триггера образуются прямоугольные управляющие импульсы, длительность которых определяется скоростью развертки. При постоянном уровне сравнения размах um не меняется при переключении времязадающих элементов глин. При этом генератор развертки «блокируется», т. е. Становится нечувствительным к запускающим импульсам.

Источник

А) Генератор развертки

Генератор развертки служит для получения на экране трубки развернутого во времени изображения сигнала, поданного на вертикально отклоняющие пластины.

Если подать переменное напряжение на пластины Y, электронный луч будет отклоняться только в вертикальном направлении, прочерчивая на экране вертикальную линию. Для изучения повторяющихся процессов и получения временной диаграммы необходимо заставить луч равномерно перемещаться вдоль оси X от левого края экрана до правого, а затем быстро возвращаться в исходное положение. В соответствии с этим развертывающее напряжение, подаваемое на пластины X, должно равномерно (и достаточно медленно) нарастать во времени, а затем очень резко падать до первоначального значения.

Поэтому на горизонтально отклоняющие пластины подают периодическое напряжение, изменяющееся так, что луч смещается слева направо пропорционально времени, а, дойдя до правого края экрана, быстро возвращается назад, после чего процесс повторяется.

Напряжение такой формы(рисунок 9) называется пилообразным и вырабатывается генератором развертки. Для улучшения линейности пилообразное

напряжение делают симметричным относительно нуля, так чтобы при включенной развертке луч находился в центре экрана.

Время t1 нарастания пилообразного напряжения называется временем прямого хода, время спадания напряжения называется временем обратного хода (t2). Обратный ход должен быть очень кратковременным (в идеале t2=0). Период развертки . Подадим на вертикально отклоняющие пластины переменное напряжение Uy с периодом Tc:

, (3)

а на горизонтально отклоняющие пластины – напряжение развертки с периодом Тр. Очевидно, траектория луча на экране будет представлять собой синусоиду и при равенстве периодов исследуемого сигнала Тс и развертки Тр (рисунок 10) на экране получится один период колебаний. Через время Тр луч вернется в крайнее левое положение и снова начнет вычерчивать синусоиду, которая точно ляжет на первую, и на экране возникнет неподвижная осциллограмма.

Если уменьшить частоту развертки вдвое, то за увеличенное время развертки луч успеет совершить два полных колебания в вертикальном направлении (рисунок 10).

И вообще, если (n – целое число), осциллограмма будет представлять собой кривую из n периодов исследуемого напряжения. Если Тр не является целым кратным Тс, то электронный луч будет начинать движение слева направо каждый раз в различных фазах, и создается иллюзия бегущей осциллограммы.

Генератор развертки вырабатывает пилообразное напряжение развёртки, которое осуществляет горизонтальную развёртку ЭЛТ, а также сигналы управления яркостью ЭЛТ. Пилообразное напряжение усиливается до необходимой величины усилителем горизонтального отклонения и поступает на горизонтально-отклоняющие пластины ЭЛТ.

Вход усилителя горизонтального отклонения может быть переключен на гнездо «Вход Х» при помощи переключателя 3 — S (разв./Вх.Х).

Схема генератора развёртки содержит: триггер управления разверткой, генератор пилообразного, генератор пилообразного напряжения, схему возвращения в исходное состояние.

Триггер управления разверткой предназначен для управления работой генератора пилообразного напряжения. Он представляет собой сочетание триггера Шмидта на микросхеме V15 и усилителя на транзисторе V17.

Источник

Принцип работы осциллографа

Электронно-лучевые (электронные) осциллографы предназначены для визуального наблюдения, измерения и регистрации электрических сигналов. Возможность наблюдения изменяющихся во времени сигналов делает осциллографы чрезвычайно удобными при определении различных амплитудных и временных параметров наблюдаемых сигналов. Важными достоинствами осциллографов являются широкий частотный диапазон (до 100 МГц), высокая чувствительность и большое входное сопротивление. Все это обусловило их широкое практическое применение.

В основе работы любых электронных осциллографов лежит преобразование исследуемых сигналов в видимое изображение, получаемое на экране электронно-лучевой трубки.

Электронно-лучевые трубки.

Простейшая однолучевая трубка (ЭЛТ) представляет собой стеклянный баллон, из которого откачан воздух и в котором расположены (рис.4.20) подогреваемый катод К, модулятор (сетка) М, фокусирующий анод А1 ускоряющий анод А2, две пары взаимно перпендикулярных откло­няющих пластин ОПх и ОПу (горизонтальные и вертикальные отклоняющие пластины). Внутренняя поверхность дна баллона (экран Э) покрыта люминофором, способным светиться под действием бомбардировки электронами.

Читайте также:  Дизель генератор 150 квт тсс

Рис. 4.20. Схема управления лучем электронно-лучевой трубки

Совокупность электродов К, M, A1, А2 называют электронной пушкой. Конструктивно эти электроды выполнены в виде цилиндров, расположенных по оси трубки. Электронная пушка излучает узкий пучок электронов — электронный луч. Для этого на электроды пушки подают напряжение, как показано на рис.4.20, где ЦУЭЛ — цепи управления электронным лучом.

Интенсивность электронного луча регулируют путем изменения отрицательного относительно катода напряжения на модуляторе, что приводит к изменению яркости свечения люминофора. Напряжения на первом и втором анодах формируют электронную линзу для фокусировки потока электронов в узкий луч, позволяющий получить на экране трубки светящееся пятно малого размера. Для ускорения электронов до скорости, необходимой для свечения люминофора, служит третий анод А3, на который подается высокое положительное напряжение.

Сформированный электронный луч проходит между парами отклоняющихся пластин ОПх и ОПу и под действием напряжений, приложенных к этим пластинам, отклоняется, соответственно, по осям координат X и У, вызывая смещение светящегося пятна на экране трубки. На рис.4.20 также показана упрощенная схема управления начальной установки луча по оси Y (по оси X управление аналогичное). Меняя положение подвижного контакта переменного резистора («Смещение Y»), можно изменять напряжение на пластинах Y и тем самым смещать луч по экрану.

Чувствительность электроннолучевой трубки равна

где lt — отклонение луча на экране трубки, вызванное напряжением Ut приложенным к отклоняющим пластинам. Обычно ST = 0,5 ÷ 5 мм/В.

Устройство и принцип действия осциллографа

Упрощенная функциональная схема осциллографа (рис.4.21) включает в себя электронно-лучевую трубку ЭЛТ, входной делитель напряжения ВД, усилитель вертикального отклонения УВО, состоящий из предварительного усилителя ПУ, линии задержки ЛЗ и выходного усилителя ВУ, блок синхронизации БС, генератор развертки ГР, усилитель горизонтального отклонения УГО и калибраторы амплитуды КА и длительности КД.

Рис.4.21. Функциональная схема электронно-лучевого осциллографа

Исследуемый сигнал подается на вход Y канала вертикального отклонения, включающего в себя входной делитель и усилитель вертикального отклонения. Выходное напряжение УВО, поступая на вертикальные отклоняющие пластины, управляет отклонением электронного луча в трубке по оси Y.

При подаче переменного напряжения на вход Y электронный луч вычерчивает на экране осциллографа вертикальную линию. Для получения изображения исследуемого сигнала, развернутого во времени, необходимо смещать (развертывать) луч по оси X с равномерной скоростью. Это осуществляется подачей на отклоняющие пластины ОПх линейно изменяющегося пилообразного напряжения, вырабатываемого генератором развертки ГР.

Принцип развертки изображения иллюстрируется рис.4.22, где даны кривые изменения напряжения их и , подаваемые на пластины ОПх и OПy и получающееся при этом изображение на экране осциллографа. Цифрами 14, 1’4′ обозначены точки кривых в соответствующие моменты времени. Из рисунка видно, что при равенстве периодов напряжений их и uY на экране получается неподвижное изображение одного периода исследуемого сигнала. При увеличении периода пилообразного напряжения их в п раз на экране появится изображение п периодов исследуемого сигнала.

Для получения устойчивого изображения на экране осциллографа частота пилообразного напряжения развертки должна быть кратна частоте исследуемого сигнала. Выдержать точно кратность частот напряжений их и uY на практике оказывается достаточно сложно вследствие «ухода» частоты генератора ГР и изменения частоты исследуемого сигнала. Это приводит к неустойчивости изображения сигнала. Для обеспечения устойчивости изображения в осциллографе имеется блок синхронизации БС, который осуществляет изменение частоты генератора ГР (в некоторых пределах) в соответствии с частотой исследуемого процесса.

Для наблюдения непериодических или однократных сигналов используется ждущий режим работы генератора развертки, при котором пилообразный импульс вырабатывается только с приходом исследуемого импульса. Для того, чтобы не потерять изображение на экране начальной части сигнала, в канале вертикального отклонения используется линия задержки ЛЗ. Благодаря ей исследуемый сигнал поступает на пластины вертикального отклонения спустя некоторое время tЗАД после начала работы генератора развертки.

В осциллографах предусматривается также возможность запуска генератора развертки от внешнего источника сигналов, подключаемого к специальному входу «Вход синхронизации».

Основные характеристики осциллографов.

Коэффициент отклонения КU – отношение напряжения входного сигнала к отклонению луча (в делениях шкалы), вызванному этим напряжением. Типовой диапазон значений 50 мкВ/дел – 10 В/дел.

Коэффициент развертки Кt — отношение времени Δt к отклонению луча, вызванному напряжением развертки за это время. Типовой диапазон значений 0,01 мкс/дел – 1 с/дел.

Полоса пропускания – диапазон частот, в пределах которого коэффициент отклонения изменяется не более чем на 3 дБ относительно значения на средней частоте. Современные осциллографы имеют полосу пропускания 100 МГц.

Классы точности осциллографов — 1, 2, 3 или 4 при величине основной погрешности измерения напряжения и временных интервалов, соответственно, не более 3, 5, 10, 12%.

Параметры входов осциллографов определяется активным сопротивлением RВХ (>1 Мом) и входной емкостью СВХ (единицы пикофарад)

  • 4 Автоматическое измерение параметров сигнала
  • 5 Плюсы и минусы цифрового осциллографа
  • 6 Где купить цифровой осциллограф

Цифровой осциллограф

Цифровой осциллограф – это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие в том, что внутри него идет цифровая обработка сигналов, в отличие от аналогового осциллографа. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять сигнал. В этом заключается его главное отличие от простого аналогового осциллографа.

Принцип работы осциллографа

В осцилло­графе исследуемый электри­ческий сигнал подается через канал вертикаль­ного отклонения на вертикально отклоня­ющую систему ЭЛТ, а горизонтальное отклонение электронного луча трубки осуществляется напря­жением горизонтальной развертки.

ЭЛТ представляет собой вакуумную стеклянную колбу, внутри которой размещены электронная пушка, отклоняющие пластины и люминесцентный экран. Электронная пушка состоит из подогреваемого катода К, модулятора (сетки) яркости светового пятна М, электродов фокусировки и ускорения электронного луча — фокусирующего анода А1ускоряющего анода А2 и ос­новного анода А3. Яркость свечения люминофора ЭЛТ регулируется путем изменения отрицательного напряжения на модуляторе М. Напряжение на первом аноде А1 фокусирует электронный поток в узкий луч. Чтобы придать электронам скорость, необходимую для свечения люминофора, на второй анод А2 подается достаточно большое (до 2000 В) положительное напряже­ние. Для дополнительного ускорения электронов используют основной анод А3, к которому приложено высокое положительное напряжение (до 10. 15 кВ).

Из курса физики вы знакомы с устройством электрон­ной пушки, отметим лишь, что ее назначением является формирование узко­го электронного пучка, при попадании которого на люминесцентный экран на экране возникает светящееся пятно.

Упрощенно работу отклоняющих систем ЭЛТ можно пояснить следую­щим образом. Электронный пучок (луч), проходит между двумя парами вза­имно перпендикулярных металлических отклоняющих пластин: вертикально отклоняющих Y и горизонтально отклоняющих X. Если к отклоняющим пла­стинам приложить напряжение, то между ними будет существовать электри­ческое поле, которое будет вызывать отклонение электронного луча в ту или иную сторону. Когда напряжение приложено к вертикально отклоняющим пластинам, то пятно будет перемещаться по оси Y; если же напряжение при­ложено к горизонтально отклоняющим пластинам, то световое пятно на эк­ране трубки будет отклоняться вдоль оси X. Если теперь сфокусировать электронный луч так, чтобы световое пятно расположилось в центре экрана ЭЛТ, а затем к пластинам Y приложить исследуемое напряжение, а к пласти­нам X пилообразное напряжение, то под совместным воздействием двух на­пряжений луч вычертит на экране трубки осциллограмму, отражающую за­висимость входного напряжения от времени.

Канал вертикального отклонения луча служит для передачи на пластины Y ЭЛТ исследуемого сигнала uc(t), подводимого к входу Y. Канал вертикального отклонения луча содержит аттенюатор, линию задержки и усилитель Y. Аттенюатор позволяет ослабить сигнал в определенное число раз, а регулируемая линия задержки обеспечивает небольшой времен­ной сдвиг сигнала на пластинах Y ЭЛТ относительно начала развертывающе­го напряжения Ux, что важно для ждущего режима. Усилитель Y обеспечивает амплитуду сигнала на пластинах Y, достаточную для значительного отклоне­ния луча на экране даже малым исследуемым сигналом uс(t).

В свою очередь, усилитель Y канала вертикального отклонения луча со­держит входной усилитель с изменяемым коэффициентом усиления Куси парафазный (с противофазными выходными сигналами одинаковой амплиту­ды) усилитель, обеспечивающий положение светового пятна в центре экрана при отсутствии исследуемых сигналов. В канал вертикального отклонения луча может также входить калибратор амплитуды. Сигнал от калибратора поступает на вход первого усилителя для установки заданного коэффициента усиления Кус1.

Цена деления В/дел масштабной сетки на экране осциллографа без учета аттенюатора определится формулой:

где UK — напряжение на выходе калибратора;

Кус1 — коэффициент усиления усилителя канала, при одном фиксированном положении регулировки;

nк — число делений сетки, занятое изображением калибровочного сигнала на эк­ране ЭЛТ.

Цена деления масштабной сетки с учетом коэффициента деления kд атте­нюатора сд=сkд. Если в процессе работы параметр с остается постоянным, то величина сд может быть указана на дискретном переключателе аттенюато­ра, что и делается на практике.

Основные характеристики канала вертикального отклонения:

• верхняя граничная частота (порядка 100 МГц и более);

• чувствительность Sy = kдКуcSт (Sт— чувствительность трубки); чувстви­тельность составляет около 1 мм/мВ при kд= 1;

• входное сопротивление (1. 3 МОм) и входная емкость канала (1. 5 пФ);

• погрешности измерения напряжения и интервалов времени 5. 7 %.

Скакой целью во входной цепи канала вертикального отклонения включают ком­мутируемый разделительный конденсатор?

— он позволяет при необходимости исключить подачу на вход осциллографа постоянной составляющей иссле­дуемого сигнала («закрытый» вход).

^ Канал горизонтального отклонения луча служит для создания горизон­тально отклоняющего — развертывающего — напряжения Ux с помощью напряжения генератора развертки или для передачи (через аттенюатор и уси­литель) на пластины X исследуемого сигнала, подводимого к входу X.

Схема синхронизации (и запуска развертки) управляет генератором раз­вертки и обеспечивает кратность периодов сигнала и развертки. Для получе­ния неподвижного изображения начало развертки должно быть связано с одной и той же характерной точкой сигнала (фронтом, максимумом амплиту­ды и т.д.). Это достигается синхронизацией напряжения развертки с напря­жением сигнала, поэтому период развертки должен быть равен или кратен периоду исследуемого сигнала: Тразв = nТс, где n = 1, 2, 3,4, .

Развертка — это линия, которую прочерчивает луч на экране при отсут­ствии исследуемого сигнала в результате действия только одного развертывающего напряжения.

Процесс привязки развертки к характерным точ­кам сигнала называют синхронизацией в автоколебательном режиме и запус­ком — в ждущем. Синхронизация и запуск развертки производятся специ­альным синхроимпульсом, подаваемым на генератор из устройства синхро­низации.

В осциллографе установлены два режима синхронизации: внутренняя и внешняя. При внутренней синхронизации (переключатели П1 и П2 — в по­ложении 1) синхроимпульсы вырабатываются из усиленного входного сиг­нала до его задержки. При внешней (переключатели П1 и П2 — в положении 2) — сигнал синхронизации подается от внешнего источника на специальный вход X осциллографа. Например, в стандартных генераторах импульсов вы­рабатываются синхроимпульсы, относительно которых выходной сигнал может быть сдвинут с помощью регулируемой задержки.

Читайте также:  Размеры ремней генератора рено сандеро

Схема синхронизации вырабатывает сигнал синхронизации, поступающий на генератор развертки для получения четкой, неподвижной осциллограммы. Усилитель X канала горизонтального отклонения усиливает пилообразный сиг­нал Uр генератора развертки и преобразует его в напряжение развертки Ux.

Канал горизонтального отклонения характеризуется чувствительностью и полосой пропускания, показатели которых практически раза в два меньше, чем в канале вертикального отклонения. Основной блок в канале горизон­тального отклонения — генератор развертки, работающий в непрерывном или ждущем режиме. К форме пилообразного напряжения генератора предъ­является ряд требований:

• время обратного хода луча должно быть много меньше времени прямого хода, т.е. То6р « Тпр. В противном случае часть изображения сигнала будет отсутствовать;

• напряжение развертки при прямом ходе луча должно быть линейным, иначе луч будет двигаться по экрану с различной скоростью и нарушится равномерность временного масштаба по оси X. Это может привести к иска­жению сигнала.

Канал управления яркостью (канал модуляции электронного луча по яр­кости) осциллографа предназначен для подсветки прямого хода луча. Под­светка осуществляется путем передачи с входа Z на управляющий электрод (модулятор М) ЭЛТ сигнала, модулирующего поток ее луча и, следовательно, яркость свечения люминофора. Постоянное напряжение на модуляторе ЭЛТ выбирают на уровне запирания трубки. В схему этого канала входят: атте­нюатор, схема изменения полярности и усилитель Z. Для формирования тре­буемого уровня напряжения, поступающего на модулятор, служит усилитель Z. Усилитель может иметь дополнительный вход. Это дает возможность мо­дуляции изображения по яркости внешним сигналом. Канал Z используется и для создания яркостной отметки в осциллографах с двойной разверткой, а также яркостных меток для измерения частоты и фазы.

Калибратор — генератор напряжений, формирующий периодический импульсный сигнал с известными амплитудой, длительностью и частотой для калибровки осциллографа, т. е. для обеспечения правильных измерений параметров исследуемого сигнала.

Для калибровки оси Y используют постоянные напряжения обеих поляр­ностей (иногда плавно регулируемые) и напряжения в виде меандра. Мас­штаб по оси X обычно устанавливают по синусоидальному напряжению, ста­билизированному по частоте кварцем.

Виды разверток в универсальном осциллографе

Одним из основных блоков осциллографа является ЭЛТ, выходные эле­менты которой — две пары пластин, с помощью генераторов развертки от­клоняющие луч горизонтально и вертикально. Если развертывающее напря­жение приложено к одной паре отклоняющих пластин (обычно к пластинам X), то развертку называют по форме развертывающего напряжения (нап­ример, линейной или синусоидальной). Если развертывающие напряжения приложены к отклоняющим пластинам X и Y трубки одновременно, то назва­ние развертке дается по ее форме (например, круговая или эллиптическая).

Наиболее широко используется линейная развертка, создаваемая пилообразным напряжением Up генератора развертки. В случае линейной развертки луч, двигаясь равномерно по экрану, прочерчивает прямую гори­зонтальную линию, как бы нанося на экран ось абсцисс декартовой системы координат — ось времени. В зависимости от режима работы генератора раз­вертки такую развертку подразделяют на несколько видов. Рассмотрим неко­торые из них.

Автоколебательная развертка — это развертка, при которой генератор развертки периодически запускается (автоматически) и при отсутствии сиг­нала запуска на его входе.

Ждущая развертка — развертка, при которой генератор развертки запус­кается только с помощью сигнала запуска.

Однократная развертка — развертка, с помощью которой генератор раз­вертки запускается один раз с последующей блокировкой. Однократная раз­вертка применяется для наблюдения одиночных и непериодических процес­сов, а также при фотографировании с экрана осциллографа неповторяющих­ся сигналов.

При подаче на горизонтально отклоняющие пластины напряжения uх = uр пилообразной формы, электронный сфокусированный луч под воз­действием этого напряжения перемещается слева направо на интервале Тпр (точки 0-1-2 — длительность прямого хода луча) и справа налево на ин­тервале То6р (точки 2-3 — длительность обратного хода луча). Причем ско­рость движения луча в обратном направлении много больше (обычно луч при этом гасится), чем в прямом.

С помощью напряжения развертки, подаваемого на горизонтальные плас­тины ЭЛТ (пластины X) осциллографа, на его экране можно наблюдать ис­следуемый сигнал, поступающий на пластины У и изменяющийся во времени (развернутый во времени).

Автоколебательная (непрерывная) развертка применяется для иссле­дования периодических сигналов, а также импульсных с небольшой скважностью q = Tс/τ Она включается при внутренней синхронизации.

а рисунке представлены исследуемые импульсы uс длительностью τ ка­ждый, развертывающее синхронное напряжение uх и наблюдаемая осцилло­грамма (в рамке). Период повторения импульсов и период развертывающего напряжения: Тс = Тр.

С помощью автоколебательной развертки почти невозможно наблюдать непериодические сигналы и она фактически бесполезна при наблюдении пе­риодических коротких импульсных сигналов с большой скважностью q (это связано с тем, что передний и задний фронты импульса почти сливают­ся). В этих случаях используют ждущую развертку.

арактерный пример использования ждущей развертки в осциллографе пока­зан на следующем рисунке. Генератор развертки запускается только при поступлении им­пульсов uс. Если длительность развертки, равная t2 – t1 сопоставима с длите­льностью исследуемого импульса, то его изображение на экране достаточно де­тально.

В осциллографе в силу инерционности генератора начало ждущей раз­вертки может быть несколько задержано относительно фронта импульса uс. Поэтому, если фронт импульса очень короткий, то он может не отобразиться на осциллограмме. Для наблюдения короткого фронта сигнал uс задерживают на τ3 во времени в канале Y с помощью линии задержки (штриховые импуль­сы uс на рис.). Наблюдаемая осциллограмма дана вместе с не задержан­ным импульсом штриховой линией (справа).

Для решения ряда измерительных задач, например измерения частоты или разности фаз, вместо пилообразного напряжения развертки (линейной развертки) используют синусоидальную развертку. Для получения синусоидальной развертки на пластины X подают напряжение, изменяющее­ся по гармоническому закону . При этом генератор линейной развертки осциллографа отключается. Положительный полупериод напряже­ния синусоидальной развертки вызывает перемещение луча от центра экрана до его правой границы и обратно; отрицательный полупериод — от центра экрана до его левой границы и обратно к центру. Скорость перемещения луча изменяется по синусоидальному закону, хотя линия развертки представляет собой горизонтальную линию.

Для получения круговой развертки на пластины Y подается синусоидальный сигнал , а на пластины X— ана­логичный по форме и амплитуде сигнал, но задержанный на четверть перио­да (по фазе на φ = 90°), т.е. . Осциллограмма круговой развертки показана на рисунке.

Под действием напряжений разверток uу и ux луч прочерчивает на экране окружность за период Т. Положение луча на экране в момент времени t = 0 отмечено точкой 0, в момент t1 — точкой 1 и т. д. Если амплитуды сигналов uу и uх не равны, то круг искажается и на экране наблюдается эллипс, т.е. возникает эллиптическая развертка. Например, при uу //www.youtube.com/embed/DkyR2Xo7-xw

Параметры приспособления

Осциллограф, как и любой электрический прибор, имеет ряд технических параметров. Именно они определяют его функциональность и степень использования. К его работе предъявляются требования по классу точности, стабильности работы, шумовым характеристикам.

Важнейшими параметрами прибора являются:

  • Полоса пропускания частоты. Характеризует точность измерений. Чем она больше, тем более детально можно изучить форму сигнала. При этом значение этого параметра должно превышать частоту исследуемого сигнала в несколько раз.
  • Дискретизация. Определяет разрешающую способность прибора.
  • Число каналов. Их значение определяет число одновременно независимых измерений, которые можно выполнить на устройстве. Это даёт возможность выводить на экран сразу несколько графиков и сравнивать их между собой. Радиолюбительский класс имеет 2−4 канала, а профессиональный до 16.
  • Размер памяти. Её величина влияет на скорость отклика устройства.
  • Тип питания. Существуют приборы, работающие от сети переменного напряжения 220 вольт или аккумуляторных батарей.
  • Время нарастания входного сигнала. Чем меньше, тем лучше. Это значит, что чем меньше «отгрызается» начало первого сигнала на экране при внутренней синхронизации, то тем лучше частотные свойства осциллографа.
  • Характеристики экрана. Сюда относится: детализация, инертность, частота развёртки. Причём чем выше разрешение, тем больше степень детализации.
  • Режим сегментированной памяти. Некоторые цифровые приборы имеют режим сегментированной памяти. То есть у них есть возможность выборочно фиксировать сигналы с нужной (высокой) частотой дискретизации.
  • Наличие эквивалентного режима. Применяется для исследования периодического сигнала. Позволяет поднять частоту дискретизации в несколько раз.

Применение осциллографа

Осциллограф предназначен для изучения различных взаимосвязей между несколькими величинами. Отображаемая на экране осциллограмма показывает как изменяется форма напряжения во времени. Так, по ней можно легко определить полярность, амплитуду, длительность, скважность и частоту сигнала.

В грубом приближении осциллограф работает как графический вольтметр. Он измеряет сигнал и выводит его форму на дисплей. Устройством можно измерить даже напряжение высокой частоты. Его основное назначение заключается использование поиска неисправностей в сложных радиоэлектронных схемах или исследовательских измерениях. Например, с помощью него возможно:

  • определять временные параметры;
  • изучать фазовый сдвиг;
  • фиксировать частоту сигнала;
  • наблюдать переменную и постоянную составляющую напряжения;
  • отмечать присутствие гармоник и их параметров;
  • выяснять процессы, происходящие во времени.

Таким образом, осциллограф нужен для того, чтобы можно было наглядно наблюдать колебания электротехнического сигнала, а также видеть помехи и искажения, тем самым определяя неисправный элемент в различных узлах по форме входного и выходного импульса. Кроме этого, осциллограф широко применяется при диагностике электродвигателей. Изучая генерации, возникающие при работе мотора, можно вычислить неисправность катализатора, выявить увеличенный подсос воздуха, отследить сигналы с различных датчиков.

Работа с измерителем

Перед тем как воспользоваться осциллографом, выполняется калибровка. Для этого измерительные щупы подключаются к входу усилителя (отклонение луча в вертикальной плоскости) и общему выводу, обозначаемому как земля. В случае если используется ЭЛТ, после включения необходимо подождать некоторое время для прогрева экрана.

Затем понадобится пройти следующие этапы:

  1. Регулятор установки времени выставляется на деление, соответствующее 1 мс/дел.
  2. Ручка «Вольт/деление» переключается в положение 0,5 В/дел.
  3. Контроль синхроимпульсов переводится в режим «авто». Если такое положение не предусмотрено, то выбирается внутренняя синхронизация и устанавливается тип сигнала — переменный.
  4. Вращая регуляторы положения луча (вверх/вниз и вправо/влево), устанавливают режим «Авто» или просто добиваются появления луча на экране.
  5. Переключатель вида сигнала переводится в позицию GND (земля).
  6. Общий щуп соединяется со специальным контактом заземления корпуса устройства. Если в осциллографе такого контакта нет, то зажим щупа одевается на любую неизолированную металлическую часть корпуса.
  7. Переключатель «Тип сигнала» переводится в нейтральное положение для подключения вывода к земле. Если же такого переключателя нет, то щупы замыкаются друг с другом.
  8. Ручками вертикальной и горизонтальной настройки добиваются установки луча на середину экрана.
  9. Если устройство имеет переключатель «Тип сигнала», то он устанавливается в положение замера постоянной формы или щуп просто отсоединяется от гнезда заземления.
  10. Переключением масштаба «Вольт/деление» добиваются разворачивания сигнала на весь экран, что повышает точность наблюдений.
  11. С помощью измерительных проводов приступают к нужным исследованиям, подстраивая в случае необходимости масштаб «Вольт/деление».

Таким образом, использование осциллографа, позволяет осуществлять операции по настройке и ремонту сложных приборов, которые с помощью тестера выполнить невозможно. Работа на современном устройстве не намного сложнее измерений, проводимых мультиметром.

Что можно измерить при помощи осциллографа

  • Напряжение (амплитуду).
  • Временные параметры, по которым можно рассчитать частоту.
  • Отслеживать сдвиг фаз.
  • Видеть искажения, которые вносит элемент или участок цепи.
  • Определить постоянную и временную составляющие сигнала.
  • Увидеть наличие шума.
  • Рассчитать соотношение сигнал/шум.
  • Видеть/определить параметры импульсов.
Читайте также:  Схема генератора прямоугольных импульсов регулируемой скважностью

Сигнал, который показывает осциллограф, довольно информативен. Видны искажения, которые вносит та или иная деталь, можно отследить, как меняется форма/амплитуда/частота в каждой точке схемы, после каждой детали.

Кроме наблюдения за формой сигнала, осциллограф можно использовать для определения целостности сопротивлений, конденсаторов, катушек индуктивности (см. видео ниже).

Устройство и принцип работы

Рассмотрим блок-схему и алгоритм работы аналогового осциллографа. Как уже говорили, изменять изображения можно по горизонтали и по вертикали. Приборы на основе электронно-лучевой трубки (ЭЛТ) для этого имеют две пары пластин. Одна пара для изменения масштаба по вертикали (амплитуда или напряжение). Вторая — для растягивания или сжатия по горизонтали (временные параметры).

Устройство аналогового осциллографа: блок-схема

Отслеживаемый сигнал подается на входной усилитель, где усиливается или уменьшается до заданных значений. Значение задается переключателями. Коэффициент усиления обычно от 100 до 1000. Усиленный сигнал идет на пластины вертикальной развертки электронно-лучевой трубки.

Горизонтальная развертка формируется на основе пилообразного сигнала, который генерируется в соответствующем блоке (генератор развертки). Его параметры также задаются соответствующим переключателем. Отображение на экране ЭЛТ идет в режиме реального времени, с некоторой задержкой. Величина задержки прописывается в технических характеристиках прибора.

Основные блоки аналогового осциллографа

Для работы осциллографа важен блок синхронизации. Он обеспечивает появление картинки в момент поступления потенциала на вход. За счет этого на экране мы видим сигнал за некоторый промежуток времени. Есть разные типы синхронизации. Они выбираются переключателем. Чаще всего выбирают синхронизацию от самого исследуемого сигнала. Есть еще от сети и внешнего источника.

Режимы работы осциллографа

Осциллографом исследуют различные типы сигналов. Они могут быть постоянными (напряжение в сети), периодическими (шумы, помехи, звуки и т.д.). Периодические могут возникать случайно или с определенным интервалом. В зависимости от того, как часто или редко возникает сигнал, выбирают тот или иной режим работы. Чаще всего в осциллографе есть два режима: автоматический (автоколебательный) и ждущий. Еще может быть однократный.

Выбор режима работы осциллографа

Если мы не знаем, как часто возникают импульсы, выбирают обычно автоматический режим. В нем даже при отсутствии потенциала на входе или при его недостаточном уровне экран светится. Отображается «нулевой» сигнал — прямая линия, которая должна идти по горизонтальной оси на экране (выставляется по линии регуляторами со стрелочками). При появлении потенциала на входе, он отображается на экране. Картинка при этом периодически обновляется и мы видим развертку сигнала по времени.

Так выглядит экран осциллографа в автоколебательном (авторежиме) при отсутствии сигнала

Ждущий режим хорош для редко появляющихся сигналах. Пока на входе ничего нет, экран не светится. При появлении каких-либо изменений он загорается, запускается генератор развертки и сигнал отображается на экране. Запуск можно настроить как по восходящему фронту импульса/синусоиды, так и по нисходящему. Можно настроить запуск не на исследуемый сигнал, а на то событие, которое ему предшествует (если такое есть).

Одиночный режим настраивает осциллограф на принятие одного сигнала. Когда на вход приходит потенциал нужного уровня, сигнал отображается на экране. После этого прибор переходит в неактивное состояние. И, даже если на входе будет следующий потенциал (или пять, или сто пять) он его не зарегистрирует. Для приема другого импульса нужно заново «взвести» прибор.

Делитель (аттенюатор)

Исследуемый сигнал может иметь напряжение от десятых долей до сотен вольт. Есть осциллографы со встроенным регулятором чувствительности — аттенюатором. Выглядит он как переключатель с градуировкой. Она задает «вес» одного деления на экране и определяет, во сколько раз понижается входной сигнал. Если ожидается малый уровень, мы просто выставляем на 1 или на 0,1. В таком случае одно деление на экране по вертикали будет 1 В и 0,1 В соответственно. И «понижать» сигнал будут в 1 раз (то есть, передадут как есть) или усилят в 10 раз перед подачей на вход (это если стоит 0,1).

Не все осциллографы имеют встроенный делитель (аттенюатор). В комплекте с таким прибором идут внешние делители на 1:10 или 1:100. Это прямоугольные или цилиндрические насадки с разъемами с обоих сторон. Они устанавливаются во входной разъем и через них подается напряжение на вход, но уже пониженное в соответствующее количество раз.

Примерно так выглядит делитель. Он устанавливается во входное гнездо, а к нему уже подключается измерительный шнур

Ставить делитель необязательно. Необходимость определяется по ожидаемому уровню сигнала. В характеристиках указывается максимальное входное напряжение, которое может подаваться на прибор без делителя и с делителем. По уровню ожидаемого сигнала и ставим насадку.

Если уровень неизвестен, сначала выставляют самый большой делитель (или самое большое деление на аттенюаторе). Это предохранит прибор от перегорания если потенциал будет высоким. По результатам первого замера выбирается оптимальный режим.

Особенности цифровых моделей

Цифровой осциллограф работает иначе — аналоговый сигнал преобразуется в цифровую форму. В таком виде он записывается в ЗУ и передается на монитор, где из цифрового формата переводится снова в аналоговую форму. Отображение на экране начинается только в тот момент, когда уровень на входе превысит определенное значение (задается настройками).

Периодичность смены картинки зависит от выбранного режима работы: автоматический, одиночный и обычный. Обычный — это аналог ждущего.

Упрощенная блок-схема цифрового осциллографа

Чем лучше цифровые модели? Во-первых, такое преобразование делает изображение более стабильным. Во-вторых, проще увеличивать и уменьшать масштаб. В-третьих, есть возможность записи. Ну, и габариты. Самый небольшой аналоговый осциллограф — С1-94 — имеет размеры 100*190*300 мм и вес 3,5 кг. А цифровые при размерах 100*50-60*13-20 мм имеют вес порядка 150-300 граммов. И это вместе с аккумуляторами.

Как работать с осциллографом

Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения. Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.

Подключение осциллографа

В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.

Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.

Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.

Измерительные шнуры для осциллографа

Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).

После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.

Проверка осциллографа перед работой

Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.

Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен

Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.

Как измерить осциллографом напряжение: переменное, меандра, постоянное

Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление. Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно.

Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.

Измерение напряжения осциллографом

Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.

Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.

Как осциллографом определить частоту

Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.

Как определить частоту сигнала по осциллографу

Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц

Полоса пропускания осциллографа: что это и на что влияет

При выборе осциллографа смотрят на следующие параметры:

  • Полоса пропускания.
  • Максимальное входное напряжение.
  • Режимы развертки.
  • Источники синхронизации.

Обо всех параметрах, кроме полосы пропускания, уже рассказали. Полоса пропускания — это чуть ли не важнейший показатель. Она определяет максимальную частоту сигнала, который будет отображаться без искажений. Например, при полосе пропускания 20 Гц — 20 МГц, все что имеет более высокую частоту будет подавляться.

Там, где полоса пропускания заканчивается, частоты жестко подавляются

Как же выбирать частоту пропускания? Зависит от того, какие сигналы вы собираетесь изучать и насколько «глубоко» вам надо их исследовать. Для аналоговых сигналов все просто — верхний предел должен быть больше чем максимальная частота. С меандрами все сложнее. На самом деле они состоят их суммы нечетных гармоник сигнала. Чем больше гармоник, тем больше форма похожа на квадрат, а не на сглаженное что-то. Но гармоники высокого порядка имеют очень высокую частоту. Если надо исследовать фронты, их отклонение, то верхний предел полосы пропускания — это десятки гигагерц. А такие приборы очень дорогие. Для обычной синусоиды достаточно 10-20 МГц, что значительно дешевле.

Источник