- Низкочастотные генераторы сигналов: принцип действия прибора
- Как выглядят низкочастотные генераторы сигналов?
- Самодельные приборы
- Генераторы синусоидального сигнала
- Низкочастотные генераторы сигналов
- Как работают генераторы звуковой частоты
- Генераторы смешанного сигнала
- Генератор импульсов произвольной формы
- Генераторы сложных сигналов
- Встроенные редакторы
- Генераторы цифрового сигнала
- Высокочастотные конструкции
- Логические сигналы
- Отзывы о генераторах
- Генератор звуковых частот и сферы его применения
- Радиолюбитель
- Последние комментарии
- Радиодетали – почтой
- Компьютер – осциллограф, генератор, анализатор спектра
- Компьютер – осциллограф, генератор, анализатор спектра
Низкочастотные генераторы сигналов: принцип действия прибора
Низкочастотные генераторы сигналов: если посмотреть на то, что такое генератор сигналов, то увидим, что они бывают разных форм — существует много типов таких приборов, каждый из которых используется для предоставления различной формы сигнала. Некоторые обеспечивают РЧ-сигналы, другие — НЧ аудиосигналы, некоторые могут обеспечивать различные формы сигнала, а другие воспроизводят только импульсы.
Применяются генераторы сигналов при проектировании электронных устройств. Они используются для тестирования радиопередатчиков, приемников, усилителей звуковой частоты. Генератор позволяет создать сигнал с необходимой амплитудой, частотой и периодом. Тем самым происходит имитация сигналов, которые будут поступать на устройство во время работы. Прибор является незаменимым, так как он позволяет протестировать работу любого устройства во всех режимах.
Как выглядят низкочастотные генераторы сигналов?
Стандартные низкочастотные генераторы сигналов синусоидальной формы представлены в виде небольшого короба, на передней панели имеется экран. С его помощью производится контроль колебаний и регулировки. В верхней части экрана имеется текстовое поле – это своеобразное меню, в котором присутствуют разные функции. Управление может производиться кнопками и переменными резисторами. На экране указывается вся информация, необходимая при работе.
Амплитуда и смещение сигнала регулируются при помощи кнопок. Новейшие образцы приборов оснащаются выходами, посредством которых можно произвести запись всех результатов на флеш-накопитель. Для изменения частоты дискретизации в генераторах синусоидального сигнала применяются специальные регуляторы. Благодаря им пользователь может очень быстро осуществить синхронизацию. Обычно внизу, под экраном, располагается кнопка включения, а рядом с ней выходы генератора.
Самодельные приборы
Можно сделать низкочастотные генераторы сигналов своими руками из подручных средств. Основная часть любого генератора – это селектор (англ. select – выбор). В любой конструкции он рассчитан на несколько каналов. В стандартных конструкциях применяется не более двух микросхем. Этого для реализации простейших приборов оказывается достаточно. Идеально подойдут для изготовления генераторов микросхемы из серии КН148. Что касается преобразователей, то они используются только аналоговые.
В некоторых случаях допускается использовать персональный компьютер в качестве генератора сигналов. Своими руками можно сделать небольшой переходник – он устанавливается на выходе звуковой карты. Сигнал снимается с выхода и используется для тестирования аппаратуры. На ПК устанавливается программа, которая будет управлять звуковой картой. Недостаток такой конструкции – слишком узкий диапазон частот, поэтому его нельзя использовать при тестировании некоторых приборов.
Генераторы синусоидального сигнала
Синус – это наиболее распространенная форма низкочастотного сигнала генераторов. Он необходим для тестирования большей части аппаратуры. В конструкции применяются самые простые микросхемы. Они вырабатывают сигнал, который преобразовывается операционным усилителем. Чтобы производить регулировку сигналов, необходимо в схему включить переменные или постоянные резисторы. От типа используемых сопротивлений зависит, ступенчато или плавно будет осуществляться регулировка.
Генераторы синусоидального сигнала широко применяются для настройки не только радиоаппаратуры, но и высокочастотной техники – инверторов, блоков питания, преобразователей частоты для асинхронных двигателей и т. д. Эта техника позволяет производить преобразование исходного синуса бытовой сети (частота 50 Гц). Причем частота увеличивается в десятки раз – до 100 МГц. Это необходимо для нормальной работы импульсного трансформатора.
Низкочастотные генераторы сигналов
Такие конструкции применяются для настройки и тестирования аудиоаппаратуры. Если обратить внимание на схему простейшего низкочастотного генератора сигналов, то можно увидеть, что в нем устанавливаются переменные резисторы – с их помощью производится корректировка формы и величины сигнала. Чтобы осуществить изменение величины импульса, можно использовать модулятор серии КК202. Сигнал в этом случае должен генерироваться через конденсаторы.
Низкочастотный генератор сигналов используется для настройки любой аудио аппаратуры – проигрывателей, усилителей звуковой частоты и т. д. В качестве такого генератора можно использовать персональный компьютер (даже старый ноутбук подойдет). Это бюджетный вариант, который не потребует больших затрат, если в наличии имеется старенький компьютер. Достаточно установить последнюю версию драйверов, программу для работы со звуковой картой и сделать переходник для подключения к аппаратуре.
Как работают генераторы звуковой частоты
Но если речь идет о стандартных конструкциях, выполненных на микросхемах, то в них напряжение подается на селектор. Происходит генерация сигнала одной или несколькими микросхемами.
Обычно схема состоит из одной микросхемы, которая задает частоту:
- К одному входу подключается кварцевый резонатор, настроенный на определенную частоту.
- К другому входу микросхемы подключается переменный резистор (номинал подбирается эмпирическим путем). С его помощью можно производить корректировку колебаний.
- Микросхема позволяет увеличить или уменьшить частоту, вырабатываемую кварцем, на любое значение.
- Производится прошивка микросхемы (при необходимости), чтобы при вращении ручки регулятора изменялась частота.
Максимальная частота, которую может сгенерировать прибор, зависит от используемой микросхемы и кварца. Значение в 3 ГГц является наибольшим для большинства конструкций. Для уменьшения погрешности устанавливаются ограничители.
Генераторы смешанного сигнала
В стандартной конструкции имеется многоканальный селектор. На передней панели генератора, вырабатывающего сигнал с минимальной частотой 70 Гц, расположено не меньше пяти выходов. Номиналы используемых в конструкции сопротивлений – 4 Ом, конденсаторов – 20 пФ. Генератор выходит на рабочий режим в течение 2,5 секунды.
Обратная частота прибора может регулироваться в более широком диапазоне – до 2000 кГц. При этом частота регулируется с помощью модуляционного устройства. Погрешность прибора (абсолютная) составляет не больше 2 дБ. Для стандартных генераторов сигналов используются преобразователи серии РР201.
Генератор импульсов произвольной формы
У этих приборов имеется одна особенность – у них очень маленькая погрешность. Также конструкция предусматривает тонкую регулировку выходного сигнала – для этого используется шестиканальный селектор. Минимальная частота, вырабатываемая генератором, составляет 70 Гц. Такими генераторами воспринимаются положительные импульсы. В схеме применяются конденсаторы, емкость не меньше 20 пФ. Сопротивление выхода устройства составляет не больше 5 Ом.
Все генераторы сигналов произвольной формы отличаются по параметрам синхронизации. Происходит это из-за типа установленного коннектора. По причине этого нарастание сигнала может происходить за время 15-40 нс. В зависимости от модели генератора в нем может быть два вида режимов – логарифмический и линейный. При помощи соответствующих переключателей их можно менять, что повлечет за собой коррекцию амплитуды. Суммарная погрешность частоты составляет не больше 3 %.
Генераторы сложных сигналов
DDS-генератор сигналов можно назвать конструкцией, которая позволяет получить импульсы сложной формы. В таких конструкциях применяются исключительно многоканальные типы селекторов. Вырабатываемый сигнал обязательно усиливается, а для смены режима работы применяются регуляторы.
Суммарное время нарастания сигнала составляет не больше 40 нс. Чтобы уменьшить время, используются конденсаторы емкостью не больше 15 пФ. Сопротивление выхода устройства составляет около 50 Ом (стандартное значение). При работе с частотой 40 кГц искажение не превышает 1 %. Широко используются такие конструкции генераторов для тестирования радиоприемников.
Встроенные редакторы
Все низко- и высокочастотные генераторы сигналов очень просты в настройке. У них имеется несколько четырех-позиционных регуляторов, позволяющих корректировать значение максимальной частоты. Время перехода на установившийся режим в большей части моделей составляет не больше 3 мс. Такое малое время можно достичь благодаря использованию микроконтроллеров.
Микроконтроллеры монтируются на основной плате, в некоторых конструкциях они съемные – буквально одним движением можно установить новый элемент. В конструкциях со встроенным редактором не устанавливаются ограничители. После селекторов по схеме расположены преобразователи. Иногда в схемах можно встретить синтезаторы. Максимальная частота генерируемого сигнала может составлять 2000 кГц, суммарная погрешность не более 2 %.
Генераторы цифрового сигнала
Вы рассмотрели, как работает генератор звуковых сигналов для тестирования усилителей НЧ. Но в наше время широкая популярность у цифровой техники – различные контроллеры, измерители, которые нуждаются в более тонкой настройке. Коннекторы, используемые в таких генераторах – КР300. В конструкции резисторы имеют сопротивление не меньше 4 Ом. Благодаря этому удается поддерживать большое внутреннее сопротивление всей конструкции.
В генераторах цифровых сигналов применяются трех- и четырехканальные типы селекторов, построенные на микросхеме КА345. В конструкциях происходит импульсная модуляция, так как коэффициент прохождения очень высокий. Широкополосный шум крайне низкое значение имеет – не больше 10 дБ. Данные конструкции позволяют генерировать сигналы прямоугольной формы. Они необходимы для тонкой настройки работы цифровых схем.
Высокочастотные конструкции
Внутреннее сопротивление высокочастотного генератора сигналов около 50 Ом. При этом устройство способно отдавать большую мощность. У высокочастотных конструкций полоса пропускания составляет около 2 ГГц. В схеме применяются постоянные конденсаторы емкостью свыше 7 пФ. Это позволяет поддерживать максимальный ток в цепи до 3 А. Искажения на уровне 1 %.
В высокочастотных генераторах применяются только операционные усилители. В начале и конце цепи монтируются ограничители сигналов. Для работы используются микроконтроллеры из серии РРК211 и шестиканальный селектор. При помощи регуляторов можно установить частоту выходного сигнала – минимальное значение 90 Гц.
Логические сигналы
В конструкции применяются постоянные резисторы, номинал которых не превышает 4 Ом. Благодаря этому выдерживается очень высокое внутреннее сопротивление. Чтобы уменьшить скорость, с которой передается сигнал, используется операционный усилитель. На передней панели в стандартных конструкциях присутствует три выхода, которые соединены с ограничителем полосы пропускания перемычками.
В схеме генератора сигналов применяются переключатели. Чаще используется поворотный тип, позволяющий выбрать один из двух режимов. Такие типы генераторов могут применяться для фазовой модуляции. Максимальный уровень шумов у большинства конструкций не превышает 5 дБ. Девиация (уход) частоты не более чем на 16 кГц. Среди недостатков конструкций такого типа можно выделить большое время нарастания сигнала, так как пропускная способность микроконтроллера очень низкая.
Отзывы о генераторах
Отзывы о простых конструкциях, которые продаются в магазинах, разнообразные. Одни покупатели отмечают, что в генераторах слишком заметны ступеньки (хотя кривая должна быть плавной). Из-за этого нет возможности нормально настроить звуковую технику. Другие покупатели отмечают, что генераторы не работают в одном или нескольких диапазонах. Если необходимо качество и надежность, то приобретите многофункциональный генератор.
Он позволит производить настройку любой аппаратуры – от усилителей звуковой частоты до радиопередатчиков сотовых телефонов. Дешевые конструкторы, которых в магазинах достаточно, позволяют производить только грубую настройку техники. Такой генератор сигнала частоту поддерживает хорошо, но вот форма кривой оставляет желать лучшего.
Источник
Генератор звуковых частот и сферы его применения
Генератор звуковых частот – это устройство, используемое для образования частот в звуковом диапазоне, а именно от двадцати до двадцати тысяч герц. В приспособлении осуществляется преобразование электромагнитных колебаний в звуковые.
Любой генератор звука состоит из нескольких обязательных частей: пассивные цепи, источник электроэнергии, активный элемент, устройство (цепь) обратной связи. Каждый из этих элементов выполняет свою функцию. Так, пассивные цепи обеспечивают возбуждение и постоянное поддержание колебаний. Активные элементы преобразовывают получаемую энергию в колебательную. Цепи обратной связи, главным образом, управляют активными частями и обеспечивают создание условий для возникновения автоколебаний.
Генератор звуковой частоты в основном применяется для того, чтобы настраивать или определять некоторые технические характеристики трактов на низкой частоте. Также их применяют для управления узлами и элементами приемо-передающих радиоустройств. Еще одна функция, возложенная на генератор звуковых частот – это их применение в качестве модуляторов, а также источников для питания измерительных устройств и их градуировки. Многие устройства позволяют менять свой выходной сигнал с определенным небольшим шагом, что позволяет очень точно настроить любое оборудование.
Также генераторы звуковых частот могут применяться для поиска мест прокладки трубопроводов или кабелей. Устройство является оптимальным для поиска на дальних расстояниях. Это достигается путем регулировки через две ступени мощности, которая образуется на выходе. Также для него характерна возможность излучения в одновременном режиме нескольких частот, что обеспечивает поиск по мультичастотной технологии.
Генератор звуковых частот широко применяется при создании аналоговых синтезаторов. Эти синтезаторы обладают одной характерной особенностью – они позволяют строить итоговый инструмент на базе практически независимых друг от друга блоков. Все сигналы, которые проходят между отдельными блоками, четко стандартизированы. Также уровень напряжения полностью согласован, так как все сигналы, которые передаются – нецифровой природы.
При работе синтезатора, нажатая клавиша на его клавиатуре передает сигнал на входящий порт генератора звуковой частоты. Величина напряжения, которым обладает данный сигнал, определяет высоту тона, которую должен выдать генератор звука. В результате преобразований получается разнообразная звуковая частота, образованная по различной волновой природе. Благодаря этому формируется непосредственно основной тембр звука. В этот момент, с помощью микшера, можно организовать управление уровнями всех используемых волновых форм, а также дополнительно добавлять шумовые сигналы.
Источник
Радиолюбитель
Последние комментарии
- Pit на Компьютер – осциллограф, генератор, анализатор спектра
- Владислав на Новогодние схемы
- Алек на Светодиодный ночник
- Владимир на Программа “Компьютер – осциллограф”
- ДЕМЬЯН на Регулируемый блок питания 0-12 В на транзисторах
Радиодетали – почтой
Компьютер – осциллограф, генератор, анализатор спектра
Компьютер – осциллограф, генератор, анализатор спектра
SoundCard Oszilloscope – программа превращающая компьютер в двухканальный осциллограф, двухканальный генератор низкой частоты и анализатор спектра
Доброго дня уважаемые радиолюбители!
Каждый радиолюбитель знает, что для создания более-менее сложных радиолюбительских устройств необходимо иметь в своем распоряжение не только мультиметр. Сегодня в наших магазинах можно купить практически любой прибор, но – есть одно “но” – стоимость приличного качества любого прибора не менее нескольких десятков тысяч наших рублей, и не секрет, что для большинства россиян это значительные деньги, а посему эти приборы недоступны вовсе, или радиолюбитель покупает приборы давно находящиеся в употреблении.
Сегодня на сайте Радиолюбитель , мы попробуем оснастить лабораторию радиолюбителя бесплатными виртуальными приборами – цифровой двухканальный осциллограф , двухканальный генератор звуковой частоты , анализатор спектра . Единственный недостаток этих приборов – все они работают только в полосе частот от 1 Гц до 20000 Гц. На сайте уже давалось описание похожей радиолюбительской программы: “Digital Oscilloscope“ – программа превращающая домашний компьютер в осциллограф .
Сегодня я хочу предложить вашему вниманию очередную программу – “ SoundCard Oszilloscope “. Меня эта программа привлекла неплохими характеристиками, продуманным дизайном, простотой изучения и работы в ней. Данная программа на английском, русского перевода нет. Но я не считаю это недостатком. Во-первых – разобраться как работать в программе очень легко, вы сами это увидите, во-вторых – когда нибудь вы обзаведетесь хорошими приборами (а у них все обозначения на английском, хотя сами китайские) и сразу и легко освоитесь с ними.
Программа разработана C. Zeitnitz и является бесплатной, но только для частного использования. Лицензия на программу стоит около 1500 рублей, и есть еще так называемая “частная лицензия” – стоимостью около 400 рублей, но это скорее пожертвование автору на дальнейшее совершенствование программы. Мы, естественно, будем пользоваться бесплатной версией программы, которая отличается только тем, что при ее запуске каждый раз появляется окошко с предложением купить лицензию.
Скачать программу (последняя версия на декабрь 2012 года):
Компьютер — осциллограф, генератор, анализатор спектра (28.1 MiB, 61,805 hits)
Для начала давайте разберемся с “понятиями”:
Осциллограф – прибор предназначенный для исследования, наблюдения, измерения амплитудных и временных интервалов.
Осциллографы классифицируются:
♦ по назначению и способу вывода информации:
– осциллографы с периодической разверткой для наблюдения сигналов на экране (на Западе их называют oscilloscop)
– осциллографы с непрерывной разверткой для регистрации кривой сигнала на фотоленте (на Западе называются oscillograph)
♦ по способу обработки входного сигнала:
– аналоговый
– цифровой
Программа работает в среде не ниже W2000 и включает в себя:
— двухканальный осциллограф с частотой пропускания (зависит от звуковой карты) не менее чем от 20 до 20000 Гц;
– двухканальный генератор сигналов ( с аналогичной генерируемой частотой);
– анализатор спектра
– а также имеется возможность записи звукового сигнала для его последующего изучения
Каждая из этих программ имеет дополнительные возможности, которые мы рассмотрим в ходе их изучения.
Начнем мы с генератора сигналов (Signalgenerator):
Генератор сигналов, как я уже говорил, – двухканальный – Channel 1 и Channel 2.
Рассмотрим назначение его основных переключателей и окошек:
1 – кнопки включения генераторов;
2 – окно установки формы выходного сигнала:
sine – синусоидальный
triangle — треугольный
square — прямоугольный
sawtooth — пилообразный
white noise – белый шум
3 – регуляторы амплитуды выходного сигнала (максимальная – 1 вольт);
4 – регуляторы установки частоты (нужную частоту можно установить вручную в окошках под регуляторами). Хотя на регуляторах максимальная частота – 10 кГц, но в нижних окошках можно прописать любую допускаемую частоту (зависит от звуковой карты);
5 – окошки для выставления частоты вручную;
6 – включение режима “Sweep – генератор”. В этом режиме выходная частота генератора периодически изменяется от минимального значения установленного в окошках “5” до максимального значения установленного в окошках “Fend” в течение времени, установленного в окошках “Time”. Этот режим можно включить или для любого одного канала или сразу для двух каналов;
7 – окна для выставления конечной частоты и времени Sweep режима;
8 – программное подключение выхода канала генератора к первому или второму входному каналу осциллографа;
9 — установка разности фаз между сигналами с первого и второго каналов генератора.
10 — установка скважности сигнала (действует только для прямоугольного сигнала).
Теперь давайте рассмотрим сам осциллограф:
1 – Amplitude — регулировка чувствительности канала вертикального отклонения
2 – Sync – позволяет (установив или сняв галочку) производить раздельную, или одновременную регулировку двух каналов по амплитуде сигналов
3, 4 – позволяет разнести сигналы по высоте экрана для их индивидуального наблюдения
5 – установка времени развертки (от 1 миллисекунды до 10 секунд, при этом в 1 секунде – 1000 миллисекунд)
6 – запуск/остановка работы осциллографа. При остановке на экране сохраняется текущее состояние сигналов, а также появляется копка Save (16) позволяющая сохранить текущее состояние на компьютере в виде 3-х файлов (текстовые данные исследуемого сигнала, черно-белое изображение и цветное изображение картинки с экрана осциллографа в момент остановки)
7 – Trigger – программное устройство, которое задерживает запуск развертки до тех пор, пока не будут выполнены некоторые условия и служит для получения стабильного изображения на экране осциллографа. Имеется 4 режима:
– включение/выключение. При выключенном триггере, изображение на экране будет выглядеть “бегущим” или даже “размазанным”.
– автоматический режим. Программа сама выбирает режим (нормальный или одиночный).
– нормальный режим. В этом режиме осуществляется непрерывная развертка исследуемого сигнала.
– одиночный режим. В этом режиме осуществляется одноразовая развертка сигнала ( с промежутком времени, установленным регулятором Time).
8 – выбор активного канала
9 – Edge – тип запуска сигнала:
— rising – по фронту исследуемого сигнала
– falling – по спаду исследуемого сигнала
10 – Auto Set – автоматическая установка времени развертки, чувствительности канала вертикального отклонения Amplitude, а так-же изображение выгоняется в центр экрана.
11 — Channel Mode – определяет как будут выводится сигналы на экран осциллографа:
– single – раздельный вывод двух сигналов на экран
— СН1 + СН2 – вывод суммы двух сигналов
– СН1 – СН2 – вывод разницы двух сигналов
– СН1 * СН2 – вывод произведения двух сигналов
12 и 13 – выбор отображения на экране каналов (или любой из двух, или два сразу, рядом изображается величина Amplitude)
14 – вывод осциллограммы канала 1
15 – вывод осциллограммы канала 2
16 – уже проходили – запись сигнала на компьютер в режиме остановки осциллографа
17 – шкала времени ( у нас регулятор Time стоит в положении 10 миллисекунд, поэтому шкала отображается от 0 до 10 миллисекунд)
18 – Status – показывает текущее состояние триггера а также позволяет выводить на экран следующие данные:
— HZ and Volts – вывод на экран текущей частоты напряжения исследуемого сигнала
– cursor – включение вертикальных и горизонтальных курсоров для измерения параметров исследуемого сигнала
– log to Fille – посекундная запись параметров исследуемого сигнала.
Производство измерений на осциллографе
Для начала давайте настроим генератор сигналов:
1. Включаем канал 1 и канал 2 (загораются зеленные треугольники)
2. Устанавливаем выходные сигналы – синусоидальный и прямоугольный
3. Устанавливаем амплитуду выходных сигналов равную 0,5 (генератор генерирует сигналы с максимальной амплитудой 1 вольт, и 0,5 будет означать амплитуду сигналов равную 0,5 вольта)
4. Устанавливаем частоты в 50 Герц
5. Переходим в режим осциллографа
Измерение амплитуды сигналов:
1. Кнопкой под надписью Measure выбираем режим HZ and Volts, ставим галочки у надписей Frequency и Voltage. При этом у нас сверху появляются текущие частоты для каждого из двух сигналов (почти 50 герц), амплитуда полного сигнала Vp-p и эффективное напряжение сигналов Veff.
2. Кнопкой под надписью Measure выбираем режим Cursors и ставим галочку у надписи Voltage. При этом у нас появляются две горизонтальные линии, а внизу надписи, показывающие амплитуду положительной и отрицательной составляющей сигнала (А), а также общий размах амплитуды сигнала (dA).
3. Выставляем горизонтальные линии в нужном нам положении относительно сигнала, на экране мы получим данные по их амплитуде:
Измерение временных интервалов:
Проделываем те-же операции, что и для измерения амплитуду сигналов, за исключением – в режиме Cursors галочку ставим у надписи Time. В результате вместо горизонтальных мы получим две вертикальные линии, а внизу будет высвечиваться временной интервал между двумя вертикальными линиями и текущая частота сигнала в этом временном интервале:
Определение частоты и амплитуды сигнала
В нашем случае специально высчитывать частоту и амплитуду сигнала нет необходимости – все отображается на экране осциллографа. Но если вам придется воспользоваться первый раз в жизни аналоговым осциллографом и вы не знаете как определить частоту и амплитуду сигнала мы в учебных целях рассмотрим и этот вопрос.
Установки генератора оставляем как и были, за исключением – амплитуду сигналов устанавливаем 1,0, а установки осциллографа выставляем как на картинке:
Регулятор амплитуды сигнала выставляем на 100 милливольт, регулятор времени развертки на 50 миллисекунд, и получаем картинку на экране как сверху.
Принцип определения амплитуды сигнала:
Регулятор Amplitude у нас стоит в положении 100 милливольт, а это означает, что цена деления сетки на экране осциллографа по вертикали составляет 100 милливольт. Считаем количество делений от нижней части сигнала до верхней (у нас получается 10 делений) и умножаем на цену одного деления – 10*100= 1000 милливольт= 1 вольт, что означает, что амплитуда сигнала у нас от верхней точки до нижней составляет 1 вольт. Точно так-же можно измерить амплитуду сигнала на любом участке осциллограммы.
Определение временных характеристик сигнала:
Регулятор Time у нас стоит в положении 50 миллисекунд. Количество делений шкалы осциллографа по горизонтали равно 10 (в данном случае у нас на экране помещается 10 делений), делим 50 на 10 и получаем 5, это значит что цена одного деления будет равна 5 миллисекундам. Выбираем нужный нам участок осциллограммы сигнала и считаем в какое количество делений он умещается ( в нашем случаем – 4 деления). Умножаем цену 1 деления на количество делений 5*4=20 и определяем что период сигнала на исследуемом участке составляет 20 миллисекунд.
Определение частоты сигнала.
Частота исследуемого сигнала определяется по обычной формуле. Нам известно, что один период нашего сигнала равен 20 миллисекунд, остается узнать сколько периодов будет в одной секунде- 1 секунда/20 миллисекунд= 1000/20= 50 Герц.
Анализатор спектра
Анализатор спектра – прибор для наблюдения и измерения относительного распределения энергии электрических (электромагнитных) колебаний в полосе частот.
Низкочастотный анализатор спектра (как в нашем случае) предназначен для работы в диапазоне звуковых частот и используется, к примеру, для определения АЧХ различных устройств, при исследовании характеристик шума, настройки различной радиоаппаратуры. Конкретно, мы можем определить амплитудно-частотную характеристику собираемого усилителя звуковой частоты, настроить различные фильтры и т.д.
Ничего сложного в работе с анализатором спектра нет, ниже я приведу назначение основных его настроек, а вы сами, уже опытным путем легко разберетесь как с ним работать.
Вот так выглядит анализатор спектра в нашей программе:
1. Вид отображения шкалы анализатора по вертикали
2. Выбор отображаемых каналов с генератора часто и вида отбражения
3. Рабочая часть анализатора
4. Кнопка записи текущего состояния осциллограммы при остановке
5. Режим увеличения рабочего поля
6. Переключение горизонтальной шкалы (шкалы частоты) из линейного в логарифмический вид
7. Текущая частота сигнала при работе генератора в свип-режиме
8. Текущая частота в позиции курсора
9. Указатель коэффициента гармоник сигнала
10. Установка фильтра для сигналов по частоте
Просмотр фигур Лиссажу
Фигуры Лиссажу – замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебаниях в двух взаимно перпендикулярных направлениях. Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний.
Если подать на входы «X» и «Y» осциллографа сигналы близких частот, то на экране можно увидеть фигуры Лиссажу. Этот метод широко используется для сравнения частот двух источников сигналов и для подстройки одного источника под частоту другого. Когда частоты близки, но не равны друг другу, фигура на экране вращается, причем период цикла вращения является величиной, обратной разности частот, например, период оборота равен 2 с — разница в частотах сигналов равна 0,5 Гц. При равенстве частот фигура застывает неподвижно, в любой фазе, однако на практике, за счет кратковременных нестабильностей сигналов, фигура на экране осциллографа обычно чуть-чуть подрагивает. Использовать для сравнения можно не только одинаковые частоты, но и находящиеся в кратном отношении, например, если образцовый источник может выдавать частоту только 5 МГц, а настраиваемый источник — 2,5 МГц.
Я не уверен, что эта функция программы вам пригодится, но если вдруг потребуется, то я думаю, что вам легко удастся разобраться в этой функции самостоятельно.
Функция записи звукового сигнала
Я уже говорил, что программа позволяет записать какой-либо звуковой сигнал на компьютере с целью его дальнейшего изучения. Функция записи сигнала не представляет сложностей и вы легко разберетесь как это делать:
Вид файлов, сохраняемый программой на компьютере в режиме остановки и записи текущей осциллограммы:
Источник