Меню

Измерительные приборы генераторы осциллографы



Основы использования осциллографов, анализаторов спектра и генераторов

Работа с осциллографом.

Всё начинается с измерительного щупа!

Провод щупа коаксиальный. Центральная жила щупа сигнальная, оплётка земля (минус или общий провод).

На некоторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения (1:10 или 1:100), который позволяет измерять широкий диапазон напряжений. Перед проведением измерений обращайте внимание на положение тумблера на щупе, во избежании ошибок измерения.

Щуп имеет встроенный компенсационный конденсатор. В полосе низких частот (ниже 300Гц) его влияния на усиление нет, но в полосе 3кГц — 100МГц очевидно существенное изменение усиления.

В осциллографах имеется внутренний генератор меандра, сигнал которого выведен на переднюю панель, на клемму «калибровка». Калибровочный сигнал предусмотрен специально для подстройки компенсационной емкости. Частота этого сигнала обычно равна 1кГц, при размахе в 1В. Щуп подключается к клемме «калибровка» и подстраивается для получения наиболее правильной формы сигнала.

Подключаем щуп к осциллографу.

Вход осциллографа может быть закрытым или открытым. Это позволяет подключать сигнал к усилителю Y либо напрямую, либо через разделительный конденсатор. Если вход открытый, то на усилитель Y будет подана и постоянная составляющая и переменная. Если закрытый только переменная.

Пример 1. Нам нужно посмотреть уровень пульсаций блока питания. Допустим, что напряжение блока питания 12 вольта. Величина пульсаций может быть не более 100 милливольт. На фоне 12 вольт пульсации будут совсем незаметны. В таком случае мы используем закрытый вход. Конденсатор отфильтровывает постоянное напряжение. На усилитель Y поступает только переменный сигнал. Теперь пульсации можно усилить и проанализировать!

Для масштабирования осциллограммы на экране служат ручки Усиление и Длительность .

Ручка Усиление масштабирует сигнал по оси Y. Она определяет цену деления одной клетки по вертикали в вольтах.

Ручка Длительность масштабирует сигнал по оси X. Она определяет цену деления одной клетки по горизонтали в секундах.

Пример 2. Основываясь на значениях которые указывают эти ручки и количество клеток занимаемых сигналом можно определить временные параметры сигнала в секундах и его амплитуду в вольтах. Основываясь на этих данных можно вычислить длительность импульса, паузы, периода и частоту сигнала.

В том случае, когда осциллограмма не помещается на экране и необходимо переместить её вертикально или горизонтально используются ручки вертикального и горизонтального перемещения .

Для удобного отображения циклично повторяющихся сигналов применяется синхронизация . Синхронизация обеспечивает прорисовку отдельных импульсов, начиная всегда с одной и той же точки экрана, благодаря чему создаётся эффект неподвижного изображения.

Режим развёртки определяет поведение осциллографа. Предполагается три режима: автоматический (AUTO), ждущий (Normal), и однократный (Single).

Автоматический режим позволяет получать изображения входного сигнала даже когда не происходит выполнения условий запуска. Осциллограф ожидает выполнения условий запуска в течении определённого периода времени и при отсутствии требуемого пускового сигнала производит автоматический запуск регистрации.

Ждущий режим позволяет осциллографу регистрировать форму сигналов только при выполнении условий запуска. При отсутствии выполнения этих условий осциллограф ждёт их появления, на экране сохраняется предыдущая осциллограмма, если она была зарегистрирована.

В режиме однократной регистрации после нажатия кнопки RUN/STOP осциллограф будет ожидать выполнения условий запуска. При их выполнении осциллограф произведёт однократную регистрацию и остановится.

Система запуска Trigger , определяет момент начала регистрации данных и отображения формы сигнала осциллографом. Если система запуска настроена правильно на экране будут чёткие осциллограммы.

Осциллограф поддерживает ряд видов запуска развёртки : запуск по фронту, запуск по срезу, запуск произвольным фронтом.

Уровень запуска – это значение напряжения, по достижении которого осциллограф начинает прорисовывать осциллограмму.

Работа с анализатором спектра.

Существует общая методика исследования сигналов, которая основана на разложении сигналов в ряд Фурье при помощи алгоритма быстрого вычисления дискретного преобразования Фурье, Fast Fourier Transform ( FFT ).

Данная методика основывается на том, что всегда можно подобрать ряд сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма которых в любой момент времени равняется величине исследуемого сигнала.

Благодаря этому стало возможным анализировать спектр сигналов в реальном времени.

Рассмотрим принцип работы типичного FFT-анализатора .

На его вход поступает исследуемый сигнал. Анализатор выбирает из сигнала последовательные интервалы («окна»), в которых будет вычисляться спектр, и производит FFT в каждом окне для получения амплитудного спектра.

Читайте также:  Генератор шрифта русских букв

Вычисленный спектр отображается в виде графика зависимости амплитуды от частоты.

Параметр FFT Length , длинна окна – число анализируемых отсчётов сигнала – имеет решающее значение для вида спектра. Чем больше FFT Length, тем плотнее сетка частот, по которым FFT раскладывает сигнал, и тем больше деталей по частоте видно на спектре.

Для достижения более высокого частотного разрешения приходится анализировать более длинные участки сигнала.

Когда нужно проанализировать быстрые изменения в сигнале, длину окна выбирают маленькой. В этом случае разрешение анализа по времени увеличивается, а по частоте – уменьшается. Таким образом, разрешение анализа по частоте обратно пропорционально разрешению по времени.

Один из простейших сигналов – синусоидальный. Как будет выглядеть его спектр на FFT-анализаторе? Оказывается, это зависит от его частоты. FFT раскладывает сигнал не по тем частотам, которые на самом деле присутствуют в сигнале, а по фиксированной равномерной сетке частот.

Если частота тона совпадает с одной из частот сетки FFT, то спектр будет выглядеть «идеально»: единственный острый пик укажет на частоту и амплитуду тона.

Если же частота тона не совпадает ни с одной из частот сетки FFT, то FFT «соберёт» тон из имеющихся в сетке частот, скомбинированных с различными весами. График спектра при этом размывается по частоте. Такое размытие обычно нежелательно, так как оно может закрыть собой более слабые сигналы на соседних частотах.

Чтобы уменьшить эффект размытия спектра, сигнал перед вычислением FFT умножается на весовые окна – гладкие функции спадающие к краям интервала.

Они уменьшают размытие спектра за счёт некоторого ухудшения частотного разрешения.

Простейшее окно – прямоугольное: это константа 1, не меняющая сигнала. Оно эквивалентно отсутствию весового окна.

Одно из популярных окон – окно Хэмминга . Оно уменьшает уровень размытия спектра примерно на 40 дБ относительно главного пика.

Весовые окна различаются по двум основным параметрам: степени расширения главного пика и степени подавления размытия спектра («боковых лепестков»). Чем сильнее мы хотим подавить боковые лепестки, тем шире будет основной пик. Прямоугольное окно меньше всего размывает верхушку пика, но имеет самые высокие боковые лепестки.

Окно Кайзера обладает параметром, который позволяет выбирать нужную степень подавления боковых лепестков.

Другой популярный выбор – окно Хана . Оно подавляет максимальный боковой лепесток слабее, чем окно Хэмминга , но зато остальные боковые лепестки быстрее спадают при удалении от главного пика.

Окно Блэкмана обладает более сильным подавлением боковых лепестков, чем окно Хана .

Для большинства задач не очень важно, какой именно вид весового окна использовать, главное, чтобы оно было. Популярный выбор – Хан или Блэкман . Использование весового окна уменьшает зависимость формы спектра от конкретной частоты сигнала и от её совпадения с сеткой частот FFT.

Чтобы компенсировать расширение пиков при применении весовых окон, можно использовать более длинные окна FFT: например, не 4096, а 8192 отсчета. Это улучшит разрешение анализа по частоте, но ухудшит по времени.

Работа с генератором сигналов.

Когда речь идёт об измерительной технике, то первое, что приходит в голову, это, как правило, осциллограф или логический анализатор ( регистрирующие приборы ).

Однако эти приборы способны выполнять измерения лишь в том случае, если на них поступает сигнал.

Можно привести множество примеров, когда такой сигнал отсутствует, пока на исследуемое устройство не будет подан внешний сигнал.

Пример. Нужно измерить характеристики разрабатываемой схемы и убедиться, что она соответствует требованиям.

Поэтому набор приборов для измерения характеристик электронных схем должен включать в себя источники воздействующего сигнала и регистрирующие приборы.

Генератор сигналов представляет собой источник воздействующего сигнала.

В зависимости от конфигурации генератор может формировать аналоговые сигналы, цифровые последовательности, модулированные сигналы, преднамеренные искажения, шум и многое другое.

Генератор может создавать «идеальные» сигналы или добавлять к сигналу заданные искажения или ошибки нужной величины и типа.

Сигналы могут иметь всевозможные формы:

  • синусоидальные сигналы;
  • меандры и прямоугольные сигналы;
  • треугольные сигналы и пилообразные;
  • перепады и импульсные сигналы;
  • сложные сигналы.

К сигналам сложной формы относятся:

  • сигналы с аналоговой, цифровой, широтно-импульсной и квадратурной модуляцией;
  • цифровые последовательности и кодированные цифровые сигналы;
  • псевдослучайные потоки битов и слов.
Читайте также:  Как поменять генератор джили мк кросс

Одной из разновидностей генераторов является генератор качающейся частоты. Это особый вид генератора сигналов, в котором частота выходного сигнала плавно изменяется в определенном интервале, а затем быстро возвращается к начальному значению. В это время амплитуда выходного сигнала остается постоянной.

Если в распоряжении радиолюбителя есть осциллограф, то пользуясь им совместно с генератором качающейся частоты можно легко проверить и настроить кварцевые, электромеханические и LC-фильтры, радиочастотный и ПЧ тракты приемника или передатчика, исследовать АЧХ радио- и телеаппаратуры в широком интервале частот.

Результаты сравнения технических характеристик и внутреннее устройство измерительного комплекса будут подробно описаны в следующем видео.

Источник

Генераторы, лазеры, осциллографы

В данном пособии представлены технические описания, руководства по эксплуатации, паспорта, отдельные схемы, формуляры на большое количество измерительной техники (генераторы, лазеры, осциллографы)

Генераторы (45): Г2-57 — (Ф), Г3-102 — (ТО+РЭ+Ф), Г3-109 — (ТО+РЭ+Ф), Г3-110 — (Ф), Г3-111 — (Ф), Г3-112 — (ТО+РЭ+Ф), Г3-112-1 — (Ф), Г3-113 — (ТО+РЭ+Ф), Г3-117 — (ТО+РЭ), Г3-118 — (ТО+РЭ+Ф), Г3-121 — (ТО+РЭ+Ф), Г3-122 — (ТО+РЭ+Ф), Г3-123 — (ТО+РЭ+Ф), Г3-56/1 — (ТО+РЭ), Г4-102 — (Ф), Г4-102А — (Ф), Г4-107 — (ТО+РЭ), Г4-109 — (ТО+РЭ+Ф), Г4-111 — (Ф), Г4-116 — (Ф), Г4-119А — (ТО+РЭ), Г4-121 — (ТО+РЭ+Ф), Г4-122 — (П), Г4-128 — (Ф), Г4-129 — (ТО+РЭ+Ф), Г4-143 — (Ф), Г4-151 — (ТО+РЭ+Ф), Г4-153 — (Ф), Г4-154 — (Ф), Г4-158 — (ТО+РЭ+Ф), Г4-164 — (ТО+РЭ+Ф), Г4-176 — (ТО+РЭ+Ф), Г4-44 — (ТО+РЭ), Г4-78-83 — (ТО+РЭ), Г5-44 — (ТО+РЭ), Г5-54 — (Ф), Г5-56 — (ТО+РЭ+Ф), Г5-60 — (ТО+РЭ+Ф), Г5-66 — (Ф), Г5-75 — (Ф), Г5-82 — (ТО+РЭ), Г5-88 — (ТО+РЭ), Г6-37 — (ТО+РЭ+Ф), ГКЧ-52-61 — (ТО+РЭ), РГ4-17-01 — (Ф)

Лазеры-Оптика (10): гониометр Г5, ИМО-2Н Измеритель средней мощности и энергии лазерного излучения
источник питания Не-Ne лазера, КВАНТ-15, ЛГ-75, ЛГИ 21, ЛГН-22, МДР-23 Монохроматор, СФ-26 Спектрофотометр, ФЭК-15КМ

Осциллографы (68): Н3015 — (СХ), Н313 — (РЭ), ОМЛ-3М — (ТО), ОР-1 осциллограф радиолюбителя — (СХ), Осциллограф-мультиметр Н3014 — (СХ), С1-1 — (СХ), С1-6 — (СХ), С1-17 — (СХ), С1-18 — (ТО+РЭ), С1-49 — (СХ), С1-54 — (СХ), С1-55 — (Ф+СХ), С1-57 — (ТО+РЭ), С1-64 — (Ф+СХ), С1-64а — (Ф), С1-65 — (Ф+СХ), С1-65а — (ТО+РЭ+Ф), С1-67 — (ТО+РЭ), С1-68 — (СХ), С1-69 — (ТО+РЭ), С1-70 — (Ф+СХ), С1-71 — (СХ), С1-72 — (Ф+СХ), С1-73 — (ТО+РЭ+Ф), С1-74 — (ТО+РЭ+Ф), С1-75 — (ТО+РЭ+Ф), С1-76 — (СХ), С1-77 — (СХ), С1-79 — (СХ), С1-81 — (ТО+РЭ), С1-83 — (ТО+РЭ+Ф), С1-91 — (ТО+РЭ), С1-92 — (ТО+РЭ), С1-93 — (СХ), С1-94 — (ТО+РЭ+Ф), С1-96 — (ТО+РЭ+Ф), С1-97 — (ТО+РЭ+Ф), С1-98 — (ТО+РЭ), С1-99 — (ТО+РЭ+Ф), С1-101 — (СХ), С1-102 — (ТО+РЭ), С1-103 — (ТО+РЭ), С1-104 — (ТО+РЭ+СХ), С1-107 — (СХ), С1-108 — (ТО+РЭ+Ф), С1-112 — (Ф+СХ+Ж), С1-112а — (ТО+РЭ), С1-114 — (СХ), С1-114/1 — (Ф), С1-116 — (СХ), С1-117 — (ТО+РЭ+Ф), С1-118А — (ТО+РЭ+Ф), С1-120 — (ТО+РЭ), С1-122а — (СХ), С1-124 — (ТО+РЭ+Ф), С1-125 — (ТО+РЭ+Ф), С1-126 — (Ф), С1-127 — (СХ), С1-131 — (Ф+Ж), С1-137 — (+РЭ+Ф), С1-151 — (ТО+РЭ), С1-159 — (РЭ), С1-160 — (РЭ), С1-220 — (РЭ), С7-19 — (ТО+РЭ), С8-33 — (+РЭ), С9-1 — (СХ), С9-7 — (ТО+РЭ)

Примечание: Ф — формуляр, СХ — только схемы, ТО — техническое описание, РЭ — руководство (инструкция) по эксплуатации, П — паспорт

Название: Генераторы, лазеры, осциллографы. Технические описания приборов
Автор: коллектив авторов
Год: 2008
Формат: DJVU
Язык: Русский
Размер: 157 Мб

Скачать Генераторы, лазеры, осциллографы. Технические описания приборов

Источник

Компьютер в роли осциллографа, спектроанализатора, частотомера и генератора

Современная измерительная аппаратура давно срослась с цифровыми и процессорными средствами управления и обработки информации. Стрелочные указатели уже становятся нонсенсом даже в дешевых бытовых приборах. Аналитическое оборудование все чаще подключается к обычным ПК через специальные платы-адаптеры. Таким образом, используются интерфейсы и возможности программ приложений, которые можно модернизировать и наращивать без замены основных измерительных блоков, плюс вычислительная мощь настольного компьютера.

Кроме того, и расширение возможностей обычного компьютера возможно за счет разнообразных программно-аппаратных средств, — специальных плат расширения, содержащих измерительные АЦП (аналого-цифровой преобразователь) и ЦАП (цифро-аналоговый преобразователь). И компьютер очень легко превращается в аналитический прибор, к примеру, — спектроанализатор, осциллограф, частотомер… , как и во многое другое. Подобные средства для модернизации компьютеров выпускаются многими фирмами. Однако цена и узконаправленная специфика не делают это оборудование распространенным в наших условиях.

Читайте также:  Как придумать подпись для художника генератор

Но зачем далеко ходить? Оказывается, простой ПК в своей конструкции уже содержит средства, которые с некоторыми ограничениями способны превратить его в тот же осциллограф, спектроанализатор, частотомер или генератор импульсов. Согласитесь, уже немало. К тому же делаются все эти превращения только с помощью специальных программ, которые к тому же совершенно бесплатны и каждый желающий может их скачать в Интернете.

Вы, наверное, зададитесь логичным вопросом — как же в измерениях можно обойтись без АЦП и ЦАП? Никак нельзя. Но ведь и то и другое присутствует почти в каждом компьютере, правда, называется по другому — звуковая карта. А чем не АЦП/ЦАП, скажите, пожалуйста? Это уже давно поняли те, кто написал для нее массу программ, не имеющих никакого отношения к воспроизведению музыки. Ведь обычная звуковая плата ПК способна воспринимать и преобразовывать сигнал сложной формы в пределах звуковой частоты и амплитудой до 2В в цифровую форму со входа LINE-IN или же с микрофона. Возможно и обратное преобразование, — на выход LINE-OUT (Speakers). Таким образом, вы можете работать с любым сигналом до 20 кГц, а то и выше, в зависимости от звуковой платы. Максимальный предел уровня входного напряжения 0,5-2 В тоже не составляет проблемы, — примитивный делитель напряжения на резисторах собирается и калибруется за 15 минут. Вот на таких-то нехитрых принципах и строятся программное обеспечение: осциллографы, осциллоскопы, спектроанализаторы, частотомеры и, наконец, генераторы импульсов всевозможной формы. Такие программы эмулируют на экране компьютера работу привычных для нас приборов, естественно со своей спецификой и в пределах частотного диапазона вашей звуковой платы.

Как это работает? Для пользователя все выглядит очень просто. Запускаем программу, в большинстве случаев такое ПО не нужно даже инсталлировать. На экране монитора появляется изображение осциллографа: с характерным для этих приборов экраном с координатной сеткой, тут же и панель управления с кнопками, движками и регуляторами, тоже часто копирующими вид и форму таковых с настоящих — аппаратных осциллографов. Кроме того, в программных осциллографах могут присутствовать дополнительные возможности, как, например, возможность сохранения исследуемого спектра в памяти, плавное и автоматическое масштабирование изображения сигнала и т.д. Но, конечно же, есть и свои недостатки.

Как подключиться к звуковой карте? Здесь нет ничего сложного — к гнезду LINE-IN, с помощью соответствующего штекера. Типичная звуковая плата имеет на панельке всего три гнезда: LINE-IN, MIC, LINE-OUT (Speakers), соответственно линейный вход, микрофон, выход для колонок или наушников. Конструкция всех гнезд одинакова, соответственно и штекеры для всех идут одни и те же. Программа осциллограф будет работать и отображать спектр и в том случае если снимается звуковой сигнал с помощью микрофона, подключенного к своему входу. Более того, большинство программных осциллографов, спектроанализаторов и частотомеров нормально функционируют, если в это же время на выход звуковой платы LINE-OUT выводится какой-то другой сигнал с помощью другой программы, пусть даже музыка. Таким образом, на одном и том же компьютере можно задавать сигнал, скажем с помощью программы генератора, и тут же его контролировать осциллографом или анализатором спектра.

При подключении сигнала к звуковой плате следует соблюдать некоторые предосторожности, не допуская превышения амплитуды выше 2 В, что чревато последствиями, такими как выходом устройства из строя. Хотя для корректных измерений уровень сигнала должен быть гораздо ниже от максимально допустимого значения, что так же определяется типом звуковой карты. Например, при использовании популярной недорогой платы на чипе Yamaha 724 нормально воспринимается сигнал с амплитудой не выше 0,5 В, при превышении этого значения пики сигнала на осциллографе ПК выглядят обрезанными (рис.1). Поэтому для согласования подаваемого сигнала со входом звуковой карты потребуется собрать простой делитель напряжения (рис.2).

Источник