Меню

Генератор тока зарядное устройство для



Схемы простых мощных зарядных устройств для аккумуляторов.

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.

Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В) .
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.


Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.


Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI. VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1. VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24. 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.


Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Читайте также:  Дизельная электростанция или дизель генератор

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.

Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16. 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.

В результате длительной или неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, что приводит к их деградации и последующему выходу из строя. Известен способ восстановления таких батарей методом заряда их «ассиметричным» током. При этом соотношение зарядного и разрядного тока выбирается 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

На Рис.8 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

Источник

Генератор стабильного тока для зарядки аккумуляторов, блок питания

Рассматриваемый генератор стабильного тока (ГСТ) хорошо подходит для зарядки аккумуляторов (до 12 В). Величину зарядного тока можно устанавливать в пределах 0. 10 А.

Однако изготавливался данный ГСТ не столько для зарядки аккумуляторов, сколько для иных целей. Мощный ГСТ позволяет быстро оценить практически любые контактные соединения по величине переходного сопротивления (контакты реле, выключателей и пр.).

Вступление

Используя милливольтметр постоянного тока, например мультиметр серии 830 или 890, можно легко измерить сопротивление вплоть до 0,001 Ом. Имея мощный ГСТ и милливольтметр, мы фактически приобрели миллиомметр, а это раскрывает широкие возможности в деятельности радиолюбителя.

Занимаясь ремонтом радиоэлектронных средств (РЭС), мы вынуждены проверять исправность многих комплектующих. Конструирование РЭС требует проверки уже всех радиокомпонентов без исключения (как б/у, так и новых).

В радиолюбительских условиях процесс проверки комплектующих носит, как правило, весьма поверхностный характер. Да и многое ли можно узнать о параметрах мощного диода или транзистора при использовании цифрового мультиметра? «Прозванивая» током в несколько миллиампер мощный диод на 10. 30 А, можно лишь выявить его негодность.

Получше будут результаты в случае применения стрелочного измерителя, например, М41070/1. Последний обеспечивает величину тока в измеряемой цепи более 50 мА (поддиапазон 300 Ом). А на пределе 300 кОм легко обнаруживаются дефекты диодов и транзисторов (утечки токов).

Но не все дефекты можно выявить при проверке полупроводниковых приборов низковольтными измерителями сопротивлений. Поэтому и были изготовлены измерители [1, 2].

Измеритель [1] позволяет оперативно оценить величину Uкэ.макс транзисторов, а портативный вариант такого измерителя [2] предназначен для работы от аккумулятора (не привязан к сети 220 В, что ценно в условиях радиорынка).

Этими же измерителями оценивались и величины обратных напряжений проверяемых диодов. Удобно и быстро проходил поиск дефектных конденсаторов. Кроме того, измеритель [2] имеет диапазон напряжения от 0 до 3000 В. Последнее обстоятельство позволяет испытывать изоляцию, например, между обмотками сетевого трансформатора.

В моей практике были случаи, когда удавалось найти даже место дефекта изоляции между I и II обмотками сетевого трансформатора блока питания. Никакие омметры, имевшиеся под рукой (0. 200 МОм), не фиксировали нарушения изоляции, а трансформатор уже начал «биться током».

В темноте (при напряжении более 2,5 кВ) очень хорошо было видно место дефекта, так как искра проскакивала в конкретном месте и создавала характерное потрескивание. Таким образом, удалось избежать перемотки обмоток, устранив пробой изоляции и залив его клеем. Самое важное, что радиолюбители, повторившие измерители [1, 2], остались довольны возможностями этих приборов.

Когда требуется выбрать из числа имеющихся мощных диодов наилучшие, пригодится этот ГСТ. Диоды с наименьшим прямым напряжением (Uпр) нагреваются меньше и дольше служат. Очень важно такие экземпляры использовать в низковольтных выпрямителях, где величина Uпр определяет КПД схемы.

Приходилось наблюдать, как интенсивно начинают нагреваться диоды, когда величина тока через них превышает 7. 10 А, маленькими полосками-радиаторами уже не обойтись, ибо диоды типов Д242-Д247, КД203, Д214 и пр. нагреваются настолько сильно, что могут выйти из строя. Величина тока через эти диоды не должна превышать 7 А (коэффициент нагрузки по току равен 0,7).

Однако практика использования таких диодов показала, что они могут долго и безотказно работать и при токах 10 А и более. Если ток превышает 7 А, то особенно актуален отбор экземпляров с наименьшим значением Uпр. Стоит заменить обычные кремниевые диоды Д242 диодами с барьером Шотки, например, КД2998В, как осознаешь преимущество последних (малое значение Uпр позволяет использовать малогабаритные радиаторы и при токе 10 А).

Читайте также:  Снимаем генератор ваз 2123

К сожалению, на диоды цены высокие, а на диодные мосты — чрезмерно высокие (в ремонте может и окупятся, а конструирование по ценам перекупщиков разоряет радиолюбителя). Составить мост из нескольких диодов дешевле, хотя и вызывает неудобства с несколькими теплоотводами. Параметры зарубежных диодов и мостов явно завышены, о чем свидетельствуют замены их в схемах.

Для отбора диодов с минимальным значением Uпр, испытуемый диод подключают к выходу ГСТ (как показано пунктиром на рис.1). Так выбирались диоды типов КД202, КД203, Д242-Д246, Д214, Д215, Д231, КД2997, КД2998, КД2999 и др. Кстати, Uпр диодов часто отличается от справочных данных (как типовое значение, так и регламентируемое для температуры Т>25°С и конкретной величины прямого тока.

Среди большого числа (или упаковки) однотипных диодов почти всегда встречались экземпляры, у которых Uпр было в 1,5-2 раза больше, чем у остальных. Вот такие экземпляры и перегреваются, например, в мостовом выпрямителе (их нагрев значительно превышает нагрев остальных диодов). Uпр измеряли при токе не меньшем, чем рабочий ток данного диода в конкретной конструкции.

Об измерении малых величин сопротивлений (режим миллиомметра)

Потребуется милливольтметр с пределом 200 или 2000 мВ. Резистором R9 (рис.1) устанавливают ток через измеряемое сопротивление (Rн) 1 А. Теперь на каждый милливольт падения напряжения на сопротивлении Rн соответствует миллиому этого сопротивления. Когда требуется более высокая точность измерения Rн, переходят на поддиапазон 10 А (нажат переключатель SA2) и устанавливают ток через Rн 10 А. Теперь каждому миллиому сопротивления соответствует уже 10 мВ.

При такой величине тока (10 А) прекрасно «звонятся» практически любые разъемные соединения. На них «оседает», в зависимости от переходного сопротивления, от единиц милливольт (отличного качества контакт) до десятков и сотен милливольт (это уже дефектные контакты).

Измерение малых сопротивлений при токе >10 А позволяет быстро выявить многие дефекты, которые скрыты для прозвонки мультиметрами. Предоставляется эксклюзивная проверка (в цифрах!) практически любых монтажных проводов. Берут отрезок монтажного провода длиной несколько десятков сантиметров и подключают к ГСТ.

По падению напряжения на нем определяют его пригодность для тех или иных целей. Пока человек имеет дело с конструкциями, где величина тока не превышает 1. 3 А, то измерение миллиом ему не нужно. Но в конструкциях с токами больше 10 А многое меняется. На рынках стали появляться «китайские» провода (толстый слой изоляции с малым сечением медных жил).

Отечественные провода такого же диаметра (по изоляции) имеют погонное сопротивление в два и более раз меньше, чем «китайские». Чтобы милливольтметр не вывести из строя при отключении Rн, на время измерения выводы прибора шунтируют диодом КД2998 (подойдет и любой другой с током >10 А), как это показано на рис.1.

Особую ценность ГСТ представляет при проверке разъемных соединений б/у и контактов реле. Сразу же обнаруживаются те контакты, которые требуют очистки или замены. Вот лишь несколько примеров. Широко распространенные тумблеры типов ТВ, ТП, МТ, ПТ и пр. Со временем у них переходное сопротивление увеличивается от 3. 5 мОм до 0,1 . 0,5 Ом и даже более!

Есть смысл нанести на корпус выключателя соответствующие надписи, которые и должны определять назначение (применение) выключателя. Часто очистка контактов реле давала хороший результат: обычно переходное сопротивление уменьшается в 2-10 раз (в зависимости от износа контактов). Уменьшение переходного сопротивления добивались и оптимальным прижимом контактов. Помните, что плохой контакт вызывает ускоренное разрушение контактирующих поверхностей.

О наболевшем. Люди приобретают обычные сетевые (220 В) вилки, розетки и выключатели, которые перегреваются при нагрузке более 1 кВт. Хотя на корпусах этих изделий и написаны обнадеживающие 6 А, но надписи не гарантируют надлежащего качества соединений.

Можно, конечно, проверять такие изделия, подключая их на 30. 60 мин с нагрузкой 1 кВт (ожидая вероятного нагрева в дефектном соединении). А можно использовать ГСТ для измерения переходного сопротивления. Вопрос весьма актуален, ведь плохие контакты в нагрузке электросети 220 В нередко приводят к пожару.

А качество современных бытовых сетевых вилок, розеток и выключателей лишь снижается (экономия материалов, плохая сборка, отсутствие надежных пружинящих контактов).

О схемотехнике ГСТ

ГСТ выполнен на ОУ DA1 и мощном полевом транзисторе VT7, который обеспечивает требуемый ток в нагрузке. Поскольку на постоянном токе (наш случай) полевой транзистор по цепи затвора ток не потребляет, то ОУ работает фактически без нагрузки, что повышает надежность работы всего ГСТ.

Рис. 1. Принципиальная схема стабилизатора тока для зарядки аккумуляторов и питания устройств.

R1 — 100 Ом С1 — 0,47 мкФ х 630 В
R2 — 300 Ом С2 — 0,47 мкФ х 160 В
R3, R4 — 120 Ом С3 — 100 мкФ х 25 В
R5 — 13 Ом С4 — 0,1 мкФ
R6 — 1,5 кОм С5 — 4700 пФ
R7 — 39 кОм* С6 — 100 мкФ х 25 В
R8 — 8 кОм* С7 — 0,1 мкФ
R9 — 1 кОм С8, С9, С10 — 4000 мкФ х 25 В
R10 — 100 кОм С11, С12 — 200 мкФ х 50 В
R11 — 1 кОм С13 — 4700 пФ
R12 — 13 Ом
R13 — 1 кОм VD1. VD4 — КД2998Г
R14, R15 — 1 кОм VD5 — КЦ405В
R16 — 0,1 Ом VD6 — АЛ307
R17 — 9,2 кОм* VD7, VD8 — Д814Д
R18 — 800 Ом* VD9 — Д818Е
R19 — 330 Ом VD10 — КД2998Г
R20 — 3,3 кОм
R21, R22 — 30 Ом VT1, VT2 — КТ502Д VT3, VT4 — КТ503Д
DA1 — КР140УД708 VT5 — КТ815Д VT6 — КТ814Г
PA1 — М4204-100 мкА PV1 — М903/4-15 В T1 — ТС-180-2 VT7 — IRFZ48N SA1, SA2 — ТП1-2

ОУ управляет проводимостью полевого транзистора, что и определяет ток в нагрузке Rh.

ГСТ имеет два поддиапазона регулирования тока. В показанном на схеме положении переключателя SA2 имеем 0. 2 А. Второй поддиапазон — до 10 А.

Датчик тока (резистор R16) используется как для схемы ГСТ, так и в качестве шунта амперметра. Источник опорного напряжения собран на прецизионном стабилитроне VD9 типа Д818Е и генераторе тока, который, в свою очередь, собран на транзисторах VT1-VT4 (заимствован из [3]).

Эта схема незаслуженно забыта радиолюбителями. Она обладает большей стабильностью параметров, чем однотранзисторные схемы ГСТ. Стабильность выходного тока ГСТ в цепи Rh практически полностью определяется стабильностью напряжения на неинвертирующем входе ОУ, т.е. стабильностью ИОН.

Стабильность показаний амперметра РА1 зависит от стабильности элементов R16-R18.

Детали

Вместо ОУ КР140УД708 устанавливали также К140УД7. Полевой транзистор IRFZ46 (КП741А, Б), IRFZ44(КП723А), IRFZ45 (КП723Б), IRFZ40 (КП723В), IRF540 (КП746А), IRF541 (КП746Б), IRF542 (КП746В), IRFP150 (КП747А) и т.д.

Полевой транзистор выбран из соображений максимальной надежности и простоты конструкции. При отсутствии полевого транзистора его вполне можно заменить двумя транзисторами, как показано на рис.2. Однако транзистор КТ827А здесь работает в режимах, близких к предельным (когда ток в нагрузке равен 10 А).

Выгодно заменить КТ827А двумя транзисторами. Так и поступали радиолюбители, повторявшие схему ГСТ (рис.1) и не имевшие полевых транзисторов (рис.3).

Транзистор VT7 должен быть снабжен хорошим теплоотводом с поверхностью не менее 2000 см2. Транзисторы VT1, VT2 типов КТ3107, КТ361 с любыми буквенными индексами. Транзисторы VT3, VT4 типов КТ3102, КТ315 с любыми буквенными индексами. Сюда хорошо подходят и КТ502, КТ503. Транзистор VT5 типа КТ815, КТ817; транзистор VT6 типа КТ814, КТ816.

Рис. 2. Схема для замены мощного полевого транзистора двумя кремниевыми.

Рис. 3. Мощная замена полевого транзистора тремя кремниевыми.

О диодах выпрямителя. Подойдут любые мощные диоды с током более 10 А. Если мощные диоды все-таки не удалось приобрести (на периферии их купить просто нереально), то используют старую и проверенную временем схему (рис.4) работы двух диодных мостов на одну общую нагрузку (параллельный режим).

Читайте также:  Ролик натяж генератора 2123

Схема рис.5 преследует ту же цель, что и схема рис.4, но резисторы включены таким образом, чтобы все 8 диодов были размещены на трех радиаторах, как и диоды обычного моста. Однако здесь число резисторов уже 8 (вместо 4 на рис.4).

Для схемы рис.1 сопротивления резисторов R1-R4 (рис.4) и R1-R8 (рис.5) не должны превышать 0,1 Ом (их диапазон 0,03. 0,1 Ом, но они должны быть одинаковыми).

В схеме рис.4 эксплуатируются также и мосты КЦ402, КЦ405 (R1-R4 равны 0,5. 1 Ом) и другие диоды (для КЦ402, 405 сумма токов не превышает 2 А).

Рис. 4. Выпрямитель на диодных мостах.

Рис. 5. Выпрямитель на диодах.

Проволочные резисторы изготавливались из недефицитного нихромового провода диаметром более 1,5 мм. Претензий к стабильности резистора R16 не будет, если выполнить его надлежащим образом (при токе 10 А на нем рассеивается мощность 10 Вт). Нихром по ТКС в 30 раз хуже константана, в 3 раза хуже манганина, но в 26 раз стабильнее меди.

Чтобы догнать по стабильности манганин, нужно уменьшить температуру (мощность на резисторе). Включенные параллельно 4 резистора из нихрома решают эту задачу. Ведь манганиновые или константановые шунты на периферии дефицитны. Кроме того, максимальная рабочая температура манганина менее 100°С, а у нихрома -900°С.

Подготовленные вышеуказанным способом шунты будут практически «вечными» (2,5 Вт мощности на каждом не вызовут большого нагрева). Резисторы R7, R8 и R17, R18 составлены из резисторов типа С2-13, так как стабильность их сопротивления определяет стабильность выходного тока ГСТ и, соответственно, показаний амперметра. Все остальные резисторы типа МЛТ, кроме проволочного R9 типа ПП2-12.

Электролитические конденсаторы С8-С10 широкодоступные типа К50-35 или К50-6. Уменьшать их суммарную емкость нельзя, поскольку в нагрузку ^н) станут проникать пульсации и появятся погрешности в работе ГСТ (при величине тока, близкой к 10 А). Кроме того, недостаточная емкость выпрямителя не позволит получить и выходной ток 10 А (при указанной величине переменного напряжения II обмотки сетевого трансформатора).

Если ГСТ не будет эксплуатироваться в качестве зарядного устройства 12-вольтовых аккумуляторов, то напряжение обмотки II следует уменьшить.

Рис. 6. Схема двухполупериодного выпрямителя со средней точкой.

Проверять диоды, различные контактные соединения можно и при напряжении обмотки II в несколько вольт. На практике снижали это напряжение до 6 В (при нагрузке 10 А).

Базовый вариант данного ГСТ содержал трансформатор, обмотка II которого при токе 10 А должна давать не менее 10,25 В. Обмотку II выполняли с отводом, когда нужно было получить ток более 10 А в режиме миллиомметра, сохранив ГСТ и как зарядное устройство для 12-вольтовых аккумуляторов.

Небольшое «ноу-хау» заключается в том, что проверять мощные контактные (разъемные) соединения лучше при токе, значительно превышающем паспортное значение. Например, на вилке указано 6 А, значит, надежность соединения нужно проверять при токе 10. 20 А.

В этом случае некондиционное разъемное соединение сразу себя выдает. А таких новых некондиционных вилок, розеток и выключателей на рынке появилось множество!

О трансформаторе Т1. Первый (базовый) вариант ГСТ был собран на довольно малогабаритном трансформаторе мощностью всего 160 ВА. Надпись на нем: «ТБС3-0,16У3 Р160 VA 50-60 Hz. ГОСТ.5.1360-72». В нем использовано ШЛ-железо.

По объему он меньше, чем ТС-180, и работает бесшумно, чего не скажешь о ТС-180. Вторичные обмотки намотаны заново. Обмотка II содержит 45 витков ПЭВ-1,4 мм в два провода.

Напряжение холостого хода 11,5 В. Под нагрузкой 10 А выходное напряжение не менее 10,25 В, но в случае если в диодном мосте установлены диоды Шот-ки (КД2998, 2991).

Для кремниевых Д242, 243 напряжение в обмотке II увеличивали на 2,5 В. Если диоды в схемах рис.4 и рис.5 подобраны в пары, то резисторы R1-R4 (рис.4) и R1-R8 (рис.5) можно удалить (закоротить). На практике это делали лишь с параллельными диодами, имеющими разброс Uпр не более чем на 5%. Обмотка III Т1 содержит 78 витков двойным проводом ПЭЛШО-0,41. Отвод от обмотки II для тока 20 А (на схеме не показан) делали от 28 витка.

Можно использовать и трансформатор ТС-180-2. Обмотки 9-10 и 9′-10′ соединяли последовательно. По ТУ у них 6,4 В и ток нагрузки 4,7 А. Они содержат по 23 витка провода 01,55 мм. При токе 10 А их эксплуатировать нельзя, но на короткое время можно.

В качестве обмотки III использовали обмотки 5-6, 5′-6′ и 11-12, 11′-12′, соединив их последовательно (5-6 с обмоткой 11-12 и 5′-6′ с обмоткой 11′-12′). Обмотки 11-12 дают по 6,4 В каждая, только 11′-12′ рассчитана на ток 0,3 А, а 11-12 — на 1,5 А. При токе 10 А самые «горячие» обмотки 9-10 (уже через несколько минут), но поскольку они расположены в самом верхнем слое, то их охлаждение наилучшее. Для дополнительного отвода тепла наружный слой бумаги (вместе с этикеткой) удаляли на каждой катушке ТС-180.

Когда ГСТ изготовляли только для прозвонки низкоомных соединений, то мостовой выпрямитель заменяли двухполупери-одной схемой со средней точкой (рис.6). Здесь так же, как и в схемах рис.4 и рис.5, устанавливали по 2 шт. Д242А в параллель. Для всех диодов здесь нужен один радиатор.

Главное в данной ситуации (применительно к ТС-180) заключается в том, что теперь номинальный ток с обмоток уже не 4,7 А, а более 7 А. Согласно [4], имеем выигрыш по току в 1,4 раза относительно одной обмотки 9-10.

Небольшое отступление

Эмальпровод нынче воистину позолоченный: за 1 кг нужно выложить до 5 у.е. За эти деньги реально приобрести 2-4 шт. трансформаторов ТС-180, в которых провода не меньше.

Все иные варианты ГСТ выполнялись в основном на более мощной основе (перемотанный Т С-270-1 или тороидальные трансформаторы), т.е. вторичные обмотки были намотаны заново. Если нет в наличии эмальпровода, то можно использовать практически любой одно-, многожильный медный или алюминиевый провод. Главное, чтобы было набрано требуемое сечение.

Ориентир простой — медная жила диаметром 2 мм для тока не более 10 А. Очень полезна информация по сетевым трансформаторам [5].

О проволочных резисторах (кроме R16). Все они могут быть и медными, т.е. на практике использовали отрезки медного провода 00,4. 0,6 мм. Последний при длине 1 м дает сопротивление 0,058 Ом, при длине 120 см — 0,07 Ом. Пропускание тока (из-за ТКС меди) вызывает увеличение сопротивления до 0,092 Ом.

Таким образом, отрезка эмальпровода 00,6 мм и длиной 50.100 см более чем достаточно для данных схем выпрямителей. Длина отрезка не должна смущать, так как провод легко размещается на каркасе диаметром более 1 см.

В схеме рис.6 выгодно использовать «таблетки» — КД213, КД2997, 2999. Две «таблетки» на одном радиаторе удобно располагать именно для таких корпусов, как КД213. Везде, где только можно (по напряжению), есть смысл применять диоды с барьером Шотки.

При покупке КД2998 обязательно проверяют его на величину Rобр.

Помните, что перегрев — смерть всех радиокомпонентов. С ростом температуры деградируют p-n-переходы, увеличивается число отказов. Не нужно ориентироваться на завод-изготовитель, у которого основная задача — минимизация расхода материалов и комплектующих, а нужно самим создавать запас надежности и прочности, где это возможно.

Печатная плата

Расположение элементов и рисунок печатной платы показаны на рис.7, 8.

Рис. 7. Расположение деталей на печатной плате устройства.

Рис. 7. Печатная плата устройства.

А.Г. Зызюк. г. Луцк, Украина. Электрик-2004-09,10.

  1. Зызюк А. Подбор транзисторов для мощных УМЗЧ//Радіоаматор. — 2001. -№6. — С.7.
  2. Зызюк А.Г. Переносной вариант измерителя икэ.макс//Электрик. — 2002. -№8. — С.8.
  3. Двухполюсный генератор стабильного тока//Радио. — 1981. — №4. — С.61.
  4. Шейкина Т.С. Эксплуатация электропитающих установок систем передачи. — М.: Радио и связь, 1982.
  5. Силовые трансформаторы типа ТС//Электрик. — 2003. — №11. — С.20.
  6. Зызюк А.Г. О трансформаторах//Радіоаматор. — 1998. — №2. — С.37.

Источник