Меню

Электрическая схема генератора высокого напряжения



Высоковольтный генератор из катушки зажигания, кулера и мосфета – легко и доступно

Всем здравствуйте! В сети множество схем высоковольтных генераторов отличающихся по мощности, по сложности сборки, по цене и доступности компонентов. Данная самоделка собрана из практически бросовых деталей, собрать ее сможет любой желающий. Собирался этот генератор, скажем так, для ознакомительных целей и всевозможных опытов с электричеством высокого напряжения. Примерный максимум этого генератора 20 киловольт. Так как в качестве источника питания для этого генератора не используется сетевое напряжение это дополнительный плюс с точки зрения безопасности.

Кому интересно попробую рассказать подробнее. В качестве генератора импульсов используется кулер охлаждения от компьютера или аналогичный на 12 вольт, но с одним условием – в нем должен быть встроенный датчик холла. Именно датчик холла и будет генерировать импульсы для высоковольтного трансформатора, в качестве которого, в данном случае, используется катушка зажигания от автомобиля. Выбрать подходящий вентилятор очень просто, как правило, он имеет три ввода.

На фото видно наличие трех выводов. Стандартная расцветка это красный вывод плюс питания, черный – общий (земля) и желтый – выход с датчика холла. При подаче питания на вентилятор на выходе (желтый провод) получаем импульсы, частота которых зависит от оборотов электромотора данного кулера и чем выше напряжение, тем выше частота импульсов. Повышать напряжение следует в разумных пределах — примерно 12-15 вольт, чтоб не спалить кулер и всю схему. Получаемый импульсный сигнал предстоит подать на катушку зажигания, но его необходимо усилить.

В качестве силового ключа использовал «N» канальный полевой транзистор (мосфет) IRFS640A подойдут и другие с аналогичными параметрами, или примерные на ток 5-10 ампер и напряжение вольт 50 для надежности. Мосфеты присутствуют практически во всех современных электронных схемах, будь то материнская плата компьютера или пусковая схема энергосберегающей лампы, а значит, найти подходящий не возникнет проблем.

Катушка зажигания от автомобилей ВАЗ «классика» Б117-А имеет три вывода. Центральный это высоковольтный выход, «Б+» это плюсовой 12 вольт, и общий «К» — возможно не маркируется.

Изначально схем состояла из трех компонентов: кулер, мосфет и катушка, но через непродолжительное время работы ломалась, так как выходили из строя либо мосфет, либо датчик холла. Выход – установка резисторов на 100 Ом для ограничения пускового тока с датчика холла на затвор, и подтягивающий резистор 10кОм для запирания мосфета при отсутствии импульса.

При сборке схемы транзистор следует устанавливать на радиатор желательно с применением термопасты, так как нагрев при работе существенный.

Разъем от кулера использовал в качестве клеммной колодки для подключения мосфета. В результате необходимость в пайке транзистора отпала, для подключения или замены достаточно соединить колодку с выводами транзистора.

Вентилятор закрепил сверху радиатора при помощи двух саморезов. В результате получилось, что кулер играет двойную роль – как генератор импульсов и как дополнительное охлаждение.

Подключаем питание 12-14 вольт от аккумулятора и пробуем в работе.

Для молний по дереву данный агрегат конечно слабоват, но что такое высокое напряжение с данной самоделкой — оценить можно.

Источник

Генераторы высокого напряжения с использованием катушек индуктивности

Все рассмотренные выше генераторы высокого напряжения имели в качестве накопителя энергии конденсатор. Не меньший интерес представляют устройства, использующие в качестве такого элемента индуктивности.

В подавляющем большинстве конструкции подобного рода преобразователей ранних лет содержали механический коммутатор индуктивности. Недостатки такого схемного решения очевидны: это повышенный износ контактных пар, необходимость их периодической чистки и регулировки, высокий уровень помех.

С появлением современных быстродействующих электронных коммутаторов конструкции преобразователей напряжения с коммутируемым индуктивным накопителем энергии заметно упростились и стали конкурентоспособными.

Основой одного из наиболее простых высоковольтных генераторов (рис. 12.1) является индуктивный накопитель энергии.

Рис. 12.1. Электрическая схема высоковольтного генератора на основе индуктивного накопителя энергии.

Генератор прямоугольных импульсов собран на микросхеме 555 (КР1006ВИ1). Параметры импульсов регулируются потенциометрами R2 и R3. Частота импульсов управления также зависит от емкости времязадающего конденсатора С1. Импульсы с выхода генератора подаются через резистор R5 на базу ключевого (коммутирующего) элемента — мощного транзистора VT1.

Читайте также:  Генератор по схеме аркадьева маркса

Этот транзистор в соответствии с длительностью и частотой следования управляющих импульсов коммутирует первичную обмотку трансформатора Т1.

В итоге на выходе преобразователя формируются импульсы высокого напряжения. Для защиты транзистора VT1 (2N3055 — КТ819ГМ) от пробоя желательно параллельно переходу эмиттер — коллектор подключить диод, например, типа КД226 (катодом к коллектору).

Высоковольтный генератор (рис. 12.2), разработанный в Болгарии, также содержит задающий генератор прямоугольных импульсов на микросхеме 555 (К1006ВИ1). Частота импульсов плавно регулируется резистором R2 от 85 до 100 Гц. Эти импульсы через RC-цепочки поступают на ключевые элементы на транзисторах VT1 и VT2. Стабилитроны VD3 и VD4 защищают транзисторы от повреждения при работе на индуктивную нагрузку.

Рис. 12.2. Схема генератора высокого напряжения на основе индуктивного накопителя энергии.

Генератор высокого напряжения (рис. 12.2) может быть использован как самостоятельно — для получения высокого напряжения (обычно до 1. 2 кВ), либо как промежуточная ступень «накачки» других преобразователей.

Транзисторы BD139 можно заменить на КТ943В. В качестве ключевых элементов преобразователей с индуктивным накопителем энергии долгие годы использовали мощные биполярные транзисторы. Их недостатки очевидны: довольно высоки остаточные напряжения на открытом ключе, как следствие, потери энергии, перегрев транзисторов.

По мере совершенствования полевых транзисторов последние начали оттеснять биполярные транзисторы в схемах источников питания, преобразователях напряжения.

Для современных мощных полевых транзисторов сопротивление открытого ключа может достигать десятые. сотые доли Ома, а рабочее напряжение достигать 1 . 2 кВ.

На рис. 12.3 приведена электрическая схема преобразователя напряжения, выходной каскад которого выполнен на полевом транзисторе MOSFET. Для согласования генератора с полевым транзистором включен биполярный транзистор с большим коэффициентом передачи.

Рис. 12.3. Электрическая схема генератора высоковольтных импульсов с ключевым полевым транзистором.

Задающий генератор собран на /ШО/7-микросхеме CD4049 по типовой схеме. Как сами выходные каскады, так и каскады формирования управляющих сигналов, показанные нарис. 12.1 — 12.3 и далее, взаимозаменяемы и могут быть использованы в любом сочетании.

Выходной каскад генератора высокого напряжения системы электронного зажигания конструкции П. Брянцева (рис. 12.4) выполнен на современной отечественной элементной базе [12.2].

Рис. 12.4. Схема выходного каскада генератора высокого напряжения П. Брянцева на составном транзисторе.

Рис. 12.5. Электрическая схема генератора высокого напряжения с задающим генератором на основе триггеров Шмитта.

При подаче на вход схемы управляющих импульсов транзисторы VT1 и VT2 кратковременно открываются. В результате катушка индуктивности кратковременно подключается к источнику питания. Конденсатор С2 сглаживает пик импульса напряжения. Резистивный делитель (R3 и R5) ограничивает и стабилизирует максимальное напряжение на коллекторе транзистора VT2.

В качестве трансформатора Т1 использована катушка зажигания Б115. Ее основные параметры: R,=1,6 Ом, l 200 кГц.

Первичная обмотка трансформатора Т1, намотанная на сердечнике от трансформатора строчной развертки, имеет 40 витков диаметром 1,0 мм. Выходное напряжение преобразователя на частотах ниже 5 кГц составляет 20 кВ, в области частот 50. 70 кГц выходное напряжение снижается до 5. 10 кВ.

Выходная мощность высокочастотного сигнала устройства может доходить до 30 Вт. В этой связи при использовании данной конструкции, например, для газоразрядной фотосъемки необходимо принять особые меры по ограничению выходного тока.

Высоковольтный генератор, рис. 12.6, имеет более сложную конструкцию.

Его задающий генератор выполнен на операционном усилителе DA1 (СА3140). Для питания задающего генератора и буферного каскада (микросхема DD1 типа 4049) используется стабилизатор напряжения на 12 Б на интегральной микросхеме DA2 типа 7812.

Предоконечный каскад на комплиментарных транзисторах ѴТ1 и ѴТ2 обеспечивает работу оконечного — на мощном транзисторе ѴТЗ.

Соотношение длительность/пауза регулируют потенциометром R7, а частоту импульсов — потенциометром R4.

Частоту генерации можно изменять ступенчато — переключением емкости конденсатора С1. Начальная частота генерации близка к 20 кГц.

Первичная обмотка доработанного трансформатора строчной развертки имеет 5. 10 витков, ее индуктивность примерно 0,5 мГч. Защита выходного транзистора от перенапряжения осуществляется включением варистора R9 параллельно этой обмотке.

Читайте также:  Оппозитный бесшатунный двигатель генератор

Транзистор 2N2222 можно заменить на КТ3117А, КТ645; 2N3055 — на КТ819ГМ-, BD135 — на КТ943А, BD136 — на КТ626А, диоды 1N4148 — на КД521, КД503 и др. Микросхему DA2 можно заменить отечественным аналогом — КР142ЕН8БЩУ DD1 — К561ТЛ1.

Следующим видом генераторов высоковольтного напряжения являются автогенераторные преобразователи напряжения с индуктивной обратной связью.

Импульсный преобразователь с самовозбуждением вырабатывает пакеты высокочастотных высоковольтных колебаний (рис. 12.7).

Рис. 12.7. Электрическая схема импульсного преобразователя напряжения с самовозбуждением.

Автогенератор импульсов высокого напряжения на транзисторе VT1 получает сигнал обратной связи с трансформатора Т1 и в качестве нагрузки имеет катушку зажигания Т2. Частота генерации — около 150 Гц. Конденсаторы С*, С2 и резистор R4 определяют режим работы генератора.

Трансформатор Т1 выполнен на магнитопроводе 11114×18. Обмотка I состоит из 18 витков провода ПЭВ-2 0,85 мм, намотанных в два провода, а II — из 72 витков провода ПЭЛШО 0,3 мм.

Стабилитрон VD2 укреплен в центре дюралюминиевого радиатора размерами 40x40x4 мм. Этот стабилитрон можно заменить цепочкой мощных стабилитронов с суммарным напряжением стабилизации 150 В. Транзистор VT1 также установлен на радиаторе размерами 50x50x4 мм.

Резонансный преобразователь напряжения с самовозбуждением описан в работе Е. В. Крылова (рис. 12.8). Он выполнен на высокочастотном мощном транзисторе VT1 типа КТ909А.

Трансформатор преобразователя выполнен на фторопластовом каркасе диаметром 12 мм с использованием ферритового стержня 150ВЧ размером 10×120 мм. Катушка L1 содержит 50 витков, L2 — 35 витков провода ЛЭШО 7×0,07 мм. Катушки низковольтной половины устройства имеют по одному витку провода во фторопластовой (политетрафторэтиленовой) изоляции. Они намотаны поверх катушки L2.

Рис. 12.8. Схема резонансного высоковольтного генератора с трансформаторной обратной связью.

Выходное напряжение преобразователя составляет 1,5 кВ (максимальное — 2,5 кВ). Частота преобразования — 2,5 МГц. Потребляемая мощность — 5 Вт. Выходное напряжение устройства изменяется от 50 до 100% при увеличении напряжения питания с 8 до 24 В.

Конденсатором переменной емкости С4 трансформатор настраивают на резонансную частоту. Резистором R2 устанавливают рабочую точку транзистора, регулируют уровень положительной обратной связи и форму генерируемых сигналов.

Преобразователь безопасен в работе — при низкоомной нагрузке высокочастотная генерация срывается.

Следующая схема высоковольтного источника импульсного напряжения с двухкаскадным преобразованием показана на рис. 12.9. Электрическая схема его первого каскада достаточно традиционна и практически не отличается от рассмотренных ранее конструкций.

Отличие устройства (рис. 12.9) заключается в использовании второго каскада повышения напряжения на трансформаторе. Это заметно повышает надежность устройства, упрощает конструкцию трансформаторов и обеспечивает эффективную изоляцию между входом и выходом устройства.

Рис. 12.9. Схема высоковольтного преобразователя с трансформаторной обратной связью и двойным трансформаторным преобразованием напряжения.

Трансформатор Т1 выполнен на Ш-образном сердечнике из трансформаторной стали. Сечение сердечника составляет 16×16 мм. Коллекторные обмотки I имеют 2×60 витков провода диаметром 1,0 мм.

Катушки обратной связи II содержат 2×14 витков провода диаметром 0,7 мм. Повышающая обмотка III трансформатора Т1, намотанная через несколько слоев межслойной изоляции, имеет 20. 130 витков провода диаметром 1,0 мм. В качестве выходного (высоковольтного) трансформатора использована катушка зажигания автомобиля на 12 или 6 В.

К генераторам высокого напряжения с индуктивными накопителями энергии следует отнести и устройства, рассмотренные ниже.

Для получения высоковольтных наносекундных импульсов В. С. Белкиным и Г. И. Шульженко была разработана схема формирователя на дрейфовых диодах и насыщающейся индуктивностью с однотактным преобразователем, синхронизированным с формирователем, а также показана возможность совмещения функций ключа формирователя и преобразователя.

Схема преобразователя, синхронизированного с формирователем, приведена на рис. 12.10; вариант схемы формирователя с раздельными ключевыми элементами приведен на рис. 12.11, а временные диаграммы, характеризующие работу отдельных узлов схемы формирователя, — на рис. 12.12.

Рис. 12.10. Схема формирователя высоковольтных импульсов с общим ключом для преобразователя и формирователя.

Читайте также:  Мотор из генератора москвича

Рис. 12.11. Фрагмент схемы формирователя высоковольтных импульсов с раздельными ключами.

Рис. 12.12. Временная диаграмма работы преобразователя.

Задающий генератор прямоугольных импульсов (рис. 12.10) вырабатывает импульсы, отпирающие транзисторный ключ VT1 на время tH и запирающие на время t3 (рис. 12.12). Их сумма определяет период повторения импульсов. За время tH через дроссель L1 протекает ток Ін. После запирания транзистора ток Ін через диод VD1 заряжает накопительную емкость формирователя С1 до напряжения Uн, диод VD1 закрывается и отсекает конденсатор С1 от источника питания.

В таблице 12.1 приведены данные по возможному использованию полупроводниковых приборов в формирователе высоковольтных импульсов. Амплитуда формируемых импульсов приведена для низкоомной нагрузки величиной 50 Ом.

Таблица 12.1. Выбор элементов для формирователей высоковольтных импульсов.

Источник

Карманный генератор высокого напряжения

Большой популярностью среди радиолюбителей пользуются различные высоковольтные генераторы. Чаще всего это блокинг-генератор, строчный трансформатор от старого телевизора и умножитель напряжения оттуда же. Однако все подобные конструкции достаточно мощные, что иногда приносит больше неудобств, чем пользы. В статье я опишу процесс сборки карманного генератора высокого напряжения (до 10 кВ), питаемого от 1-й пальчиковой батарейки. Он может пригодиться, например, для проверки свечей зажигания автомобиля, качества изоляции или чтобы просто поиграться с искорками (что в данном случае будет совершенно безопасно, так как выходная мощность генератора-миллиВатты). Итак, начнём.

На рисунке ниже представлена схема устройства. Фактически, это схема обычной зажигалки для газовой плиты.

  • GB1 – AA, AAA (1.5v)
  • TV1 – Далее в статье
  • VT1 – 2n4403
  • R2 – 2.4 кОм
  • C1 – 0.01 мкФ
  • R1 – 220 Ом
  • VT2 – 2n4401
  • VD1 – FR107
  • R3 – 500 кОм (Переменный)
  • R4 – 1 мОм
  • R5 – 10 кОм
  • VS1 – mcr100-6
  • C2 – 470-1000 нФ
  • TV2 – Далее в статье

Детали первого преобразователя

Детали второго преобразователя (1.8 мОм заменён на 1 мОм+500 кОм переменный)

Номиналы деталей не критичны. Например, вместо транзистора 2n4401 можно спокойно ставить кт315, а заменой 2n4403 будет кт361. В качестве C2 лучше брать импульсные конденсаторы (например, CBB21).

Теперь необходимо намотать трансформаторы. TV1 мотается на сердечнике от зарядного устройства телефона или дросселя балласта ЛДС. Сначала мотаем вторичную обмотку. Для этого понадобится провод 0.06 мм. Сделать нужно 500 витков. Мотать виток к витку с межслойной изоляцией не обязательно (хотя и предпочтительно), так как напряжение здесь не превысит 190 вольт. Затем делаем 2-3 витка скотчем и мотаем первичную обмотку В ТОМ ЖЕ НАПРАВЛЕНИИ, ЧТО И ВТОРИЧНУЮ. Она состоит из 10 витков провода 0.32-0.56 мм.

После этого можно собрать первую часть схемы (до диода VD1) и подключить к выходу преобразователя индикаторную неоновую лампочку (вроде тех, что устанавливаются в выключатели) и подключить питание. Если всё собрано правильно, то «неонка» загорится, причём достаточно ярко. Если этого не произошло, то попробуйте поменять местами выводы вторичной обмотки и проверить правильность монтажа в целом.

TV2 мотается на стержне от магнитной антенны старого радиоприёмника. Как и в первом трансформаторе, сначала мотаем вторичную обмотку проводом 0.06, но теперь строго виток к витку, делая качественную межслойную изоляцию (2-3 слоя скотча). Всего витков 1500. Затем кладём 4-5 слоёв скотча и мотаем первичную обмотку – 10 витков провода 0.56 мм (в том же направлении!). Теперь собираем схему до конца (не забыв при этом отключить «неонку»!), располагаем высоковольтные выводы TV2 на расстоянии 3-4 мм друг от друга и запускаем схему.

Чтобы добиться максимального выходного напряжения, меняем сопротивление резистора R3. Как только разряды станут наиболее яркими и длинными, схему можно считать настроенной.

Если собрать схему на печатную плату и сделать для неё корпус, то получится отличная кухонная зажигалка для газа. Я делать плату не стал, так как планирую собрать на базе этой схемы электронную катушку Румкорфа.

Источник