Двигатель стирлинга как генератор электроэнергии

Содержание
  1. Мощный генератор 700 Вт на двигателе Стирлинга
  2. Вдохновленный MP1002C Philips
  3. Выбор пал на конфигурацию «альфа» по следующим причинам
  4. Наддув (нагнетание давления в Стирлинге)
  5. Компрессор кондиционера от Chrysler
  6. Годы разработки
  7. Изначальные характеристики и рабочее тело
  8. Конфигурация двигателя. Пробы и ошибки
  9. Новый дизайн и появление MK II
  10. Пробный запуск генератора Стирлинга SV-2 MK II
  11. Водяное охлаждение стирлинга
  12. Дальнейшая разработка горелки
  13. Сейчас нет планов и нет чертежей для этого генератора
  14. Двигатели Стирлинга — технологический прорыв в автономной энергетике XXI века
  15. Машины Стирлинга — это машины, работающие по замкнутому термодинамическому циклу, в котором циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема.

Мощный генератор 700 Вт на двигателе Стирлинга

Чаще всего в интернете на глаза попадаются двигатели Стирлинга «хоббийного» типа, от которых вы навряд ли получите какую-либо полезную мощность. Конечно же многие из этих проектов вдохновляют и даже удивляют. Но, тем не менее, многие из них имеют право на будущее в качестве генераторов различной мощности, пусть даже и очень незначительной. Именно поэтому многие стирлингостроители с волнение и завистью смотрят на более перспективные, серьёзные и мощные генераторы на двигателях Стирлинга.

SV-2 представляет собой двигатель Стирлинга альфа конфигурации с использованием воздуха в качестве рабочего тела. Рабочее давление составляет 12 бар (175 фунтов на квадратный дюйм или 11.8 атмосфер или 1,2 мегапаскаля). Объем составляет 127 кубиков. Механическая выходная мощность на валу равна 700 Вт при 1800 оборотов в минуту.

На Ютьюбе есть видео генератора, разработанного на основе автомобильного компрессора от кондиционера. Далее перевод рассказа Дэйва Кирка, который представил на YouTube свой проект SV-2 MKII альфа-стирлинг (V-Twin) генератора.

Вдохновленный MP1002C Philips

В середине 80-х, я имел удовольствие быть свидетелем испытаний генераторной установки MP1002C Philips которая на самом деле реально работала. Опыт произвёл на меня глубокое впечатление, особенно в том, как спокойно Стирлинг завёлся и ожил. Максимум шума исходил от горелки (камеры сгорания), но в конечном итоге от двигателя Philips исходил очень приятный звуковой фон — всё, что нужно было заменить — были шумящие подшипники.

Как говорится в старой поговорке, «Он работал и работал, как швейная машинка Зингер»! В то время, мой опыт общения с двигателями Стирлинга состоял из проектирования нескольких моделек настольного размера, но, увидев и услышав работающий двигатель Philips, я захотел спроектировать, сделать дизайн и собрать двигатель такого же калибра … сделать нечто достаточно большое, что производило бы полезную ощутимую работу.

Выбор пал на конфигурацию «альфа» по следующим причинам

  • Эта конструкция имеет самое большое отношение рабочего объёма к общему объему двигателя, что позволяет физически получить компактный двигатель.
  • При конструировании альфы сдвиг фаз поршней составляет 90 градусов и поэтому достигается идеальный первичный баланс, что способствует более тихому ходу.
  • С механической точки зрения и с точки зрения исполнения в «железе» он очень простой, поэтому его выгодно строить.

Наддув (нагнетание давления в Стирлинге)

Для получения значимых выходных мощностей необходимо повышать давление в рабочей зоне двигателя. Зная, что двигатель Philips работал при давлении 12 бар (175 фунтов на квадратный дюйм), я хотел бы получить двигатель, который был бы конструктивно прочным и компактным, чтобы работать на данных уровнях внутреннего давления рабочего газа. Рабочим телом был воздух, и выбран он был на основании практичности. Я хотел, чтобы в моём генераторе смазка осуществлялась маслом, так же как и в Стирлинге от Philips — эта функция в значительной степени способствует тихой работе и длительному сроку службы, который очень хочется получить в двигателе Стирлинга.

Компрессор кондиционера от Chrysler

Примерно в это же время мне в руки попался холодильный компрессор и оказалось, что он идеально подходит в качестве основы для запланированного мной двигателя. Это был автоматический компрессор кондиционера RV-2 компании Chrysler. Кривошип разносил поршни на 90 градусов (дизайн V-твин), с диаметром цилиндра 58,7 мм и ходом поршня 33,4 мм.

В обоих цилиндрах в сочетании с правильной траекторией движения газа, рабочим объемом составил 127,8 куб.см, что составляет более чем вдвое больший объём по сравнению с MP1002C двигателя Philips. Являясь холодильным компрессором, конструкция была сделана основательно и с достаточным запасом прочности для такого сильного сжатия. Кроме того, этот компрессор содержал героторный масляный насос, который под давлением смазывал края большим шатунным подшипникам. Каждый алюминиевый поршень имел одно компрессионное кольцо и соединены через алюминиевые шатуны Alcoa. Этот компрессор оказался самым оптимальным для моей задумки.

Компрессор кондиционера Chrysler RV-2

Годы разработки

На протяжение нескольких лет, я спроектировал и уже отработал все необходимые компоненты, для того, чтобы адаптировать компрессор к работе в двигателе Стирлинга. Я также сконструировал трубчатую несущую раму, которая являлась несущим основанием для двигателя. Рама стилизована под аналогичную используемую на генераторной установке Philips.

Головка нагревателя, вытеснитель и внутренний цилиндр выполнен из труб нержавейки 302 различных размеров. В роли регенератора использовал путанку из медной проволоки. Охладитель, расположенный со стороны сжатия двигателя, был изготовлен из алюминиевых трубок. Использовал небольшой генератор 200 Вт 12 вольт с ременным приводом, который изначально был куплен и предназначался для работы на садовом тракторе.

Вот этот двигатель, получивший название SV-2 MK I (Stirling V-2 Mark I):

Генератор на базе двигателя Стирлинга SV-2 MK I (Stirling V-2 Mark 1)

Изначальные характеристики и рабочее тело

Двигатель заработал, но производительность его была далека от ожидаемой величины. Я пробовал использовать гелий в качестве рабочего тела, и это помогло, повлияв как на выходную мощность, так и на обороты, но при этом было слишком очевидно, что что-то было кардинально не правильно. Работа двигателя будет существенно лучше при поднятии давления до 2 бар и оборотах 2000 в минуту, отдавая примерно 50 Вт мощности на выходе уже с электрогенератора … дальнейшее изменение в большую или меньшую сторону скорости или давления приведёт к потере выходной мощности. Кроме того, блок цилиндров начнёт очень сильно греться через незначительное время после запуска, что является доказательством о завышенной теплопередаче вдоль корпуса двигателя.

Конфигурация двигателя. Пробы и ошибки

После долгих раздумий (и нескольких лет разочарования) я понял, что в этой конфигурации допущены ошибки. В первую очередь — в любом двигателе Стирлинга нагреватель, регенератор, и холодильник должны быть «моноблочные», то есть их размещают в непосредственной близости друг от друга. Это означает, что эти три термодинамические компоненты должны все находиться в стороне от вытеснителя двигателя, вместо того, чтобы «разбросать» их по всей цепи газового тракта, как я сделал на МК I. Такой грамотный дизайн очень важен для хорошей производительности и такая плотная моноблочная компоновка чётко прослеживается на всех двигателях Philips. Тот факт, что я расположил регенератор в тесном контакте с блоком двигателя способствовали утечке тепла вдоль всей длины двигателя — это явно плохое решение в конструкции Стирлинга.

Несмотря на не оптимальную работу, я много узнал о расходе масла и о том как очищать перемещающуюся смазку в рабочем пространстве. Разобрался с техническими особенностями особой скруглённой формы вытеснителя, его прерывистых движений, уплотнительными кольцами и канавками для них и разделённой формы вытеснителя. Открытие безуглеродного состава синтетических масел с высокой температурной точкой вспышки также было очень полезно. Собственная конструкция отражателя пламени горелки на пропане также вызывал сомнение, но после нахождения некоторых старых публикаций на эту тему, успешная расчетная схема горелки наконец-то появилась и была успешно апробирована на трёх построенных экземплярах.

Конструкция самодельного кольца газовой пропановой горелки

Новый дизайн и появление MK II

В тот момент я понял, что была необходима большая модернизация для того, чтобы получить хороший и эффективный двигатель. Копаясь в моих технических справочниках и книгах, я внедрил модернизацию во все термодинамические компоненты в газовом контуре. Были переработаны: головка нагревательного цилиндра из нержавеющей стали 316, на которой нанесены рёбра внутренние и внешние, фольга для регенератора, ребристый охладитель, а также новый вытеснитель из нержавейки с тонкими стенками.

Ребристый снаружи и внутри нагреватель двигателя стирлинга из нержавейки

Мой друг и энтузиаст в стирлингостроении Джон Арчибальд, согласился подготовить чертежи из моих эскизов дизайна и используя свои навыки в качестве слесаря-механика, помочь с созданием некоторых из наиболее сложных частей. Потребовалось еще несколько лет, чтобы получить все новые компоненты, но в конце 2012 года, версия MK II двигателя была готова и была собрана.

Кулер с рёбрами для двигателя стирлинга

Пробный запуск генератора Стирлинга SV-2 MK II

Для SV-2 MK II был первый запуск в январе 2013 года и сразу было видно, что редизайн улучшил как ходовые качества, так и производительность. Двигатель стал работать довольно приятно, когда давление рабочего газа было поднято до 4 бар (3,95 атм. или 0,4 МПа), и при увеличении давления обороты увеличивались пропорционально. И замеры мощности не были сделаны в тот момент из-за не соответствующей геометрии горелки новой ребристой головке нагревателя.

Собранный двигатель с генератором показан ниже:

Генератор на двигателе стирлинга МК-2 Генератор МК-2. Вид сзади

Водяное охлаждение стирлинга

Так как двигатель альфа имеет водяное охлаждение, то для циркуляции охлаждающей жидкости применён небольшой электрический гидронасос, запитываемый в дальнейшем от выходной мощности электрогенератора.

Дальнейшая разработка горелки

Новая горелка сейчас строится, она будет соответствовать ребристой геометрии головки нагревателя и будет выдавать более высокую теплоотдачу для предполагаемого вывода выходного вала 700 Вт на 1800 оборотов в минуту. Конструкция горелки должна быть готова к тестированию в следующем месяце или чуть позже, и должна быть полностью готова для исследования и раскрытия полного потенциала этого двигателя.

Сейчас нет планов и нет чертежей для этого генератора

У меня нет никаких планов ни производить этот двигатель ни продавать чертежи для изготовления его деталей. Это строго научный проект для демонстрации жизнеспособности данного изделия. Затруднения и издержки в изготовлении некоторых компонентов нивелировались выбором усреднённого хоббийного качества изготовления. Также, существуют компромиссы в использовании для данного двигателя элементов компрессора РВ-2, которые не будут присутствовать в идеальной конструкции. Если так и будет, то для повышения производительности это требует размещение всех термодинамических компонентов на основе собственной разработки — то есть, спроектированный заново картер, поршни, шатуны и т.д. Только тогда это будет продукт, который сможет иметь определённый рыночный потенциал.

Пожалуйста, смотрите на мои новые видео YouTube, как прогрессирует развитие. Я искренне благодарю всех вас за проявленный интерес!

Кирк Двигатели, Inc.

Далее некоторые данные из самого видео.

Совсем недавно, полная реконструкция нагревателя, регенератора и холодильника была выполнена и ,были произведены новые компоненты. Этот вариант, SV-2 MKII включает в себя все тонкости, необходимые для достижения поставленных целей. Головка нагревателя сделана из заготовки стали 316 при помощи электроэрозионного процесса. Купол и фланец свариваются в месте. Как внутренние, так и наружные ребра использованы для усиления теплообмена с рабочей жидкостью.

Внешние рёбра нагревателя и сварочный шов

Внутренние рёбра нагревателя и сварочный шов

Регенератор имеет корпус из нержавеющей стали 316 используя оберточную нержавеющую фольгу в виде материала регенератора. Толщина составляет 0,001 дюйма. Эта часть выполнена в виде цилиндрического контейнера. Торцевые экраны держат фольгу на месте.

Корпус регенератора

Охладитель сделан из 6061 Т-6 алюминиевого сплава также при помощи электроэрозионного процесса. Внешнее кольцо образует обводный канал для охлаждающей жидкости. Нагреватель, регенератор и охладитель между собой объединены в «стек» и герметизированы при помощи кольцеобразных уплотнений. Обратите внимание на 1 кубический сантиметр, расположенный рядом.

Холодильник двигателя стирлинга с водяной рубашкой

Головка цилиндра зоны компрессии изготовлена из алюминиевой заготовки. Соединительный канал сделан из толстостенной медной трубы.

Компрессионный насос двигателя стирлинга

«Стек» укреплён 4-мя несущими болтами диаметром 0,313 на кольцеобразных хомутах. Такая конструкция минимизирует утечку тепла в глубину структуры двигателя.

Кольцевые хомуты на двигателе стирлинга

Источник

Двигатели Стирлинга — технологический прорыв в автономной энергетике XXI века

Н.Г. Кириллов, доктор технических наук, академик Академии военных наук, Заслуженный изобретатель РФ.

Стирлингостроение — новое перспективное направление в области двигателестроения

Сейчас уже всем очевидно, что одним из основных направлениями развития экономики и научно-технического прогресса в XXI веке становятся задачи поиска перспективных техноло­гий энергопреобразования и серийного производства новой техники на основе высокоэф­фективных термодинамических циклов с использованием возобновляемых видов топлива и новых рабочих тел. Это означает создание, производство и внедрение в массовое применение таких высокоэффективных и экологически чистых энергосистем, которые бы обеспечивали удовлетворение нужд промышленности и населения в энергии при минимальных затратах мате­риальных ресурсов.

Во всех развитых странах мира (прежде всего, ЕС и США) основой инновационного развития промышленности становится задачи перехода на новый технологический уровень, связанный с энергосбережением, экологий и сокращением доли использования традиционных энергоресурсов. Так, к 2025 году в странах ЕС более 20% энергии будет производиться за счет использования альтернативных и возобновляемых видов топлива. В рамках решения этих задач, по оценкам многих зарубежных специалистов, наиболее перспективным путем является разработка, производство и широкое внедрение энергопреобразующих сис­тем на основе двигателей Стирлинга.

Термодинамический цикл рассматриваемых двигателей был предложен в 1816 году шотландцем Робертом Стирлингом. Наличие двух изотерм определяет равенство термодинамической эффективности идеального цикла Стирлинга и цикла Карно. Поэтому теоретически двигатели, работающие по циклу Стирлинга, потенциально самые высокоэффективные машины из всех существующих типов двигателей.

Первые наиболее интенсивные и серьезные работы по созданию конкурентноспособных двигателей Стирлинга, отличающихся чистотой выбросов, низким уровнем шума ввиду отсутствия взрывного сгорания, отсутствием систем газораспределения и зажига­ния, высокой топливной экономичностью начались в 1934 году в голландской компании «Филипс».

С 1975 года до 1990-х годов работы по создание двигателей Стирлинга велись в основном для автомобилестроительных компаний, таких как, “GeneralMotorsCo”, “FordMotorCo”, “MAN-MBW” и для военных нужд. Транспортные двигатели Стирлинга, как правило, исполнялись по типу двойного действия, с линейным приводом и т.д. При создании транспортных двигателей Стирлинга, с учетом большого количества циклов «пуск-остановка» и часто меняющейся мощности, жестких требований по массе и размерам, применялись дорогостоящие материалы (например, кобальт, цинк, медь, никель и т.д.) и сложное технологическое исполнение оригинальных конструктивных элементов. Такой подход позволял добиваться максимальных среди всех поршневых двигателей показателей эффективности, но и значительно повышал стоимость изделий. В настоящее время за рубежом транспортные типы двигателей Стирлинга широко используются в аэрокосмической технике, подводном кораблестроении, в качестве источников энергии для переносных станций связи диверсионных групп и войск специального назначения, а также в других областях военной техники.

С середины 90-х годов прошлого века в области создания двигателей Стирлинга стало превалировать направление стационарных энергетических установок. При их серийном производстве и эксплуатации наиболее значимым показателем является стоимость, которая складывается из стоимости изготовления и обслуживания. Массовые и габаритные характеристики для стационарных когенерационных установок не являются столь определяющими. На основе этого, в современных типах двигателей Стирлинга заложены новые технические решения, позволившие значительно снизить их стоимость. Необходимо отметить, что рядом зарубежных фирм начато производство двигателей, технические характеристики которых уже сейчас превосходят ДВС и газотурбинные установки в диапозоне мощностей от 1 до 100 кВт.

Основные технические характеристики предлагаемых сегодня на рынке энергетических установок на основе двигателей Стирлинга, зависимости от фирмы производителя, колеблется в пределах:

— удельная стоимость от 1300$ до 3000$ за киловатт установленной мощности;

— моторесурс от 20000 до 87000 часов;

— эффективный к.п.д. до 45%.

Необходимо отметить, что в последние годы на рынке производителей двигателей Стирлинга происходят серьезные изменения. К работам по созданию двигателей Стирлинга приступили практически во всех крупных энергетических компаниях мира. О своих программах по двигателю Стирлинга заявили такие ведущие в мире фирмы по производству энергетических установок, как «TODEM», “CumminsPowerGeneration”, “ToshibaCorp.”, “MitsubishiElectricCorp.” и др. Только за последний, 2007 год, появились новые мощные объединения, например, европейский швейцарско-немецкий концерн «Stirling Systems AG» и транснациональная корпорация, в состав которой входят ведущие американские, японские, итальянские и немецкие энергетические фирмы (“Merloni Termosanitari (MTS Group)” (Италия), “Bosch Group” (Германия), “Rinnai” (Япония), “Infinia” (США).

Появление столь крупных компаний, объединяющих в себе значительные финансовые и производственные мощности, объясняется новым более высоким уровнем требований к эффективности энергетических систем, их экологической чистоты, возрастанием требований по использованию возобновляемых и чистых местных энергоресурсов. Безусловно, уже в ближайшее время это приведет к жесткой конкурентной борьбе на рынке двигателей Стирлинга и автономных энергетических установок в целом.

Перспективы использования машин Стирлинга в различных областях энергетики в настоящее время стали очевидным для всех промышленно развитых стран мира, так по данным зарубежных экспертов, в настоящее время во всем мире не менее 140 научно-исследовательских организаций и компаний ведут интенсивные исследования в этом направлении. Ведущими странами в области проектирования и создания машин Стирлинга являются США, Великобритания, Япония, ФРГ, Швеция и Нидерланды. Кроме перечисленных стран, в последнее время начались интенсивные исследования по двигателям Стирлинга в Китае, ЮАР, Австралии, Израиле, Канаде, Индии и ряде других стран. Объективно, в последние 15-20 лет в мире начала формироваться новая перспективная отрасль машиностроения – стирлингостроение.

Что такое машины, работающие по циклу Стирлинга?

Машины Стирлинга — это машины, работающие по замкнутому термодинамическому циклу, в котором циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема.

Конструктивно, машины Стирлинга представляют собой удачное сочетание в одном агрегате компрессора, детандера и теплообменных устройств: теп­лообменника нагрузки (нагревателя или конденсатора), регенератора и холодильника. В качестве рабочего тела используется, как правило, ге­лий, а также азот и воздух.

К достоинствам машин, работающих по циклу Стирлинга, следует отнести высокую степень экологической чистоты как самих рабочих тел машин Стирлинга, так и отработанных сред, возникающих при их эксплуата­ции, а также энергетическую эффективность.

К преимуществам машин Стирлинга следует отнести ряд принципиальных свойств, присущих только этим машинам и создающих реальные предпосылки для их широкого использования практически во всех областях промышлен­ности и техники, основными из которых являются:

* широкая универсальность самого термодинамического цикла, позво­ляющего при различном конструктивном исполнении создавать как преобра­зователи прямого цикла (двигатели), так и обратного цикла (холодильные и криогенные машины);

* наивысшая энергетическая эффективность (теоретический к.п.д. цикла идеальной машины Стирлинга равен к.п.д. цикла Карно);

* высокая степень экологической чистоты как самих рабочих тел ма­шин Стирлинга, так и отработанных сред, возникающих при их эксплуатации;

* многотопливность двигателей — возможность применения в качестве источников теплоты не только сгорание традиционных энергоносителей (нефтепродукты, природный газ и т.д.), но и солнечной радиации, биогаза, древесины, торфа, угля и т.д.

Среди выпускаемых двигателей энергетические установки с двигателем Стирлинга наиболее экологически чистые, так как концентрация вредных веществ в продуктах сгорания двигателя Стирлинга практически на два порядка ниже, чем у других поршневых и газотурбинных двигателей. Важнейшим потребительским свойство двигателей Стирлинга является самый низкий уровень шума по сравнению со всеми существующими двигателями других типов. В настоящее время этот показатель для двигателя Стирлинга колеблется на уровне 60-65 дБ. Это дает возможность устанавливать стирлинг-генераторы в непосредственной близости от потребителя, что позволит избавиться от потерь на передачу электроэнергии.

Современные области применения энергетических установок с двигателями Стирлинга

Современная мировая энергетика развивается в направлении децентрализации энергоснабжения, которое оказывает содействие созданию автономных когенерационных установок и максимального использования возобновляемых источников энергии. Исключительное свойство двигателей Стирлинга, как двигателя с внешним подводом теплоты, позволяет применять не только традиционные виды топлива, но также все без исключения виды альтернативных топлив, известных в настоящее время в мире, например, биогаз, уголь, отходы деревообрабатывающей промышленности и сельского хозяйства, солнечную, атомную, высокопотенциальную теплоту дымовых газов и любые другие виды энергии, делает их особенно привлекательными в связи с использованием энергии из возобновляемых источников. Двигатель Стирлинга можно использовать во всех областях, где требуется преобразование тепловой энергии в механическую.

Когенерационные энергетические установки с двигателями Стирлинга, работающие на традиционном газовом топливе (природный газ и пропан).

Высокая экологическая чистота и эффективность обеспечивают перспективность применения двигателей Стирлинга в когенерационных установках (КУ) мощностью до 100 кВт, для одновременной выработки электроэнергии и тепла в местах их непосредственного потребления. Это новая технология для комбинирован­ного производства электроэнергии и тепла, на основе автономных двига­телей и системы рекуперации тепла, в которой энергия охлаждающей воды и отработанных газов используется для нужд теплоснабжения потребите­лей. Эффективность применения двигателей Стирлинга в когенерационных установках, по сравнению с двигателями внутреннего сгорания и газовыми турбинами, обусловлена особенностью его теплового баланса, выражающегося в разнице между потерями теплоты с отработанными газами и в охлаждающую воду. Для двигателя Стирлинга этот баланс составляет, соответственно, 10% и 40%, что с учетом более высокого к.п.д. самого двигателя, позво­ляет создавать компактные и высокоэффективные когенерационные установки (КУ). К.п.д. современных зарубежных стирплинг-генераторов с учетом получения дополнительного тепла может достигать до 95%.

На рис. 1 представлен двигатель Стирлинга, работающий на природном газе мощностью 9 кВт. Данный двигатель входит в состав когенерационной установки вырабатывающей дополнительно около 27 кВт тепловой энергии.

Применение КУ на основе двигателей Стирлинга позволяет на 40% снизить расход топлива на производство электроэнергии и тепла, по сравнению с централизованным энергоснабжением. Себестоимость 1 кВт*.ч электроэнергии, выработанной в когенерационной установке, в 3 — 4 раза ниже, чем действующие тарифы централизованных энергосистем (для России. ), а тепло получается фактически бесплатным! Применение КУ позволяет эффективно допол­нять рынок теплоэнергоснабжения без реконструкции старых, перегруженных сетей. Автономная работа когенерационной установки позволяет обеспечить потребителей теплом и электро­энергией со стабильными темпе­ратурными показателями и ка­чественной горячей водой.

С 2008 года в Германии и в ряде других развитых стран реализуются федеральные энергетическая программы по установки в домах и квартирах когенерационных установок на двигателем Стирлинга с электрической мощностью от 1,5 кВт. По мнению немецких специалистов, предтворение в жизнь данного проекта позволит избежать строительства трех крупных атомных электростанций на территории страны.

Энергетические установки с двигателями Стирлинга, работающие на твердых биоресурсах.

В настоящее время ввиду истощения ранее разведанных запасов и удорожания органического топлива (нефти и природного газа), для многих стран мира представляет значительный интерес возмож­ность серийного производства электрогенераторов средней мощности (от 3 до 100 кВт) с модификацией двигателя Стирлинга под местное топливо. В качестве местного топлива для стирлинг-генераторов может использовать­ся торф, измельченный уголь, сланцы, отходы сельского хозяйства и ле­соперерабатывающей промышленности. Решение данного вопроса уже в бли­жайшее время позволит обеспечить многие регионы мира дешевыми в экс­плуатации автономными энергоисточниками на местном топливе.

В настоящее время на рынке уже появились когенерационные установки с двигателями Стирлинга, в качестве топлива для которых используются древесная щепа, торф, биогаз и отходы сельского хозяйства.

Возврат к биоресурсам – это не возврат в прошлое, а разумный подход к экономике и экологии. Широкое использование автономных источников энергии, работающих на местном топливе, отражает мировую тенденцию на энерго- и ресурсосбережение. Наиболее интенсивно данное направление развивается в странах имеющих значительный запас биоресурсов (леса, торфяных болот и т.д.), к числу которых относятся: Швеция, Норвегия, Дания, Финляндия, России, страны Африки и Южной Америки. В России многие регионы обладают огромными запасами местного дешевого топлива. Так, например, Карелия (северо-западный регион России) располагает значительными ресурсами постоянно возобновляемой биомассы в виде древесных растений, торфа и отходов сельского хозяйства, которые могут быть использованы в энергетических целях. Запасы торфа в Карелии оценены в 2 млрд. тонн и ресурсы древесного сырья лиственных пород около 2 млн.м3/год. Только за счет использования торфа и древесного сырья можно на 60% уменьшить объем привозного топлива, а это практически третья часть бюджета Республики Карелия.

На рис.2 показан двигатель Стирлинга мощностью 28,5 кВт , работающий на древесной щепе.

Энергетические установки с двигателями Стирлинга, работающие на генераторном газе.

Другим направлением использования стирлинг-генераторов, работающих на твердой биомассе является использование технологии газификации биомассы. Газификация древесных отходов обеспечивает получение топливного газа, основу которого составляет СО, Н2 и N2 и который может быть использован в качестве газообразного топлива для двигателей Стирлинга. При получении генераторного газа из древесины его теплотворная способность обычно составляет 12-13 МДж/кг, удельная масса — 1,10 до 1,15 кг/м.куб. Выход газа, в среднем, 1,8-2,5 м.куб. на каждый килограмм газифицируемой биомассы. Благодаря высокой эффективности процесса газификации (выход генераторного газа — 85-90%), а также удобству использования газа в качестве топлива, газификация является более чистым и эффективным способом получения тепла, чем сжигание твердого топлива непосредственно в топке котла. Еще одним важным преимуществом является то, что для работы газогенератора можно использовать топливо низкого качества — опилки, стружка, измельченная кора.

Переработка древесных отходов методом пиролизного генерирования газа позволяет получать дешевую энергию. Газогенератор может решить проблемы по обеспечению теплом и электроэнергией население небольшого поселка или удаленной городской окраины крупного города. В качестве загрузочного материала могут быть использованы отходы из ближайшего леса — разобранные буреломы, кора, древесные отходы с плановых вырубок, ветви и т.п. В газогенераторе можно использовать наиболее плохие отходы древесины, низкокалорийные и содержащие высокий процент влаги — до 50%. Размеры древесных отходов, используемых в качестве топлива могут быть до 30 см .

В основе работы газогенератора лежит принцип: преобразование твердого топлива в газообразное под воздействием высокой температуры без доступа кислорода. В результате процесса, называемого пиролизом, вырабатывается генераторный, древесный газ. Газогенераторная установка предельно проста по конструкции, не требует специально обученного обслуживающего персонала в эксплуатации. Газогенератор состоит из трех основных частей: камеры газообразования, камеры возгорания и загрузочного бункера. Детали установки, работающие при повышенных температурах, изготавливаются из жаропрочных материалов. Высокая рентабельность газогенераторных стирлинг-генераторов определяется дешевизной электрической и тепловой энергии, использованием местных видов топлива, близостью к потребителю, отсутствием необходимости в дорогостоящих ЛЭП и подстанциях, экологической безопасностью и мобильностью.

Энергетические установки с двигателями Стирлинга, работающие на солнечной энергии.

Высокий к.п.д. и надежность конструкции двигателя Стирлинга обуславливают эффективность его использования в солнечных энергетических установках (Рис.3). Солнечный свет фокусируется вогнутыми зеркалами для разогрева двигателя (в качестве источника тепла). В роли охладителя может использоваться окружающий атмосферный воздух. Роль такого экологически чистого источника энергии в современном мире легко оценить. Из известных практически реализованных солнечных установок для получения электроэнергии наибольшим к.п.д. обладают установки с па­раболическими зеркалами и двигателями Стирлинга.

Среди наиболее значимых проектов по использованию солнечной энергии в настоящее время является проект создания грандиозной солнечной фермы на юге США. По данному проекту, на территории штата Невада площадью 160 кв. км будет создана, не имеющая аналогов в мире, гелиоэнерегетическая система на основе «солнечных» двигателей Стирлинга. В конечном счёте, проект предполагает компактное размещение десятки тысяч таких установок, которые будут трансформировать солнечную энергию и поставлять электричество юго-западным распределительным компаниям США.

Рис. 4. Солнечная ферма с двигателями Стирлинга в штате Невада

По расчетам американских специалистов, в случае удачного реализации данного проекта, на юге США будет создана ферма солнечных стирлингов, площадью 160х160 километров на юге США, которая покроет полностью всю потребность страны в электроэнергии.

Широко известны работы ряда крупных зарубежных фирм по созданию солнечных энергетических установок с двигателями Стирлинга для космических аппаратов, орбитальных космических станций и «лунных баз» с двигателями Стирлинга мощностью от 3 до 200 кВт. Фирмой «Алиссон» разработан и построен космический вариант солнечной установки с двигателем Стирлинга мощностью 5 кВт. Двигатель имел при n=3000 об/мин и к.п.д. равное 37,5%. В качестве источника теплоты использовался параболический лепестковый концентратор диаметром 5,8 м, который создавал в приемнике температуру 947 К. В ловушке приемника излучения предусматривался тепловой аккумулятор, отдававший тепло фазового превращения при постоянной температуре на теневых участках орбиты полета. Данная анаэробная установка имела массу 250 кг и долгое время работала на одном из искусственных спутников Земли (ИСЗ) типа «Джеминай».

В настоящее время разработкой солнечных энергетических установок с двигателями Стирлинга для объектов различного назначения занимаются ряд крупных зарубежных фирм, среди которых американская корпорация «NASA», фирма «Sanpower», анг­лийская фирма «Britisch Аerospace Public Сompany» и т.д. Так, компаниями «MC Donnall Donglas Aerospаcе» и «United Stirling AB» созданы несколько образцов «солнечных Стирлингов» мощности до 25 кВт.

Американская компания Infinia до конца текущего года рассчитывает завершить разработку конструкции новых электрогенераторов для развивающихся стран, построенных на основе солнечных двигателей Стирлинга. В отличие от традиционных солнечных батарей, коэффициент полезного действия которых составляет от 12 до 15 процентов и редко достигает 22 процентов, к.п.д. установки Infinia на основе двигателя Стирлинга, по прогнозам компании, будет составлять более 24 процентов. Мощность двигателя 3-5 кВт.

Атомные энергетические установки с двигателем Стирлинга.

Основные работы по созданию энергетических установок с двигателями Стирлинга, работающих за счет атомной энергии ведутся в США. Двигатель Стирлинга может обеспечить надежную работу энергетических установок с ресурсом более 5 лет (до 80000 часов) при к.п.д. преобразования тепловой энергии в электрическую, равном 35-40%. В качестве источника тепла для двигателя Стирлинга могут быть использованы радиоизотопные тепловые блоки и ядерные реакторы. Планируются, что атомные энергетические установки с двигателями Стирлинга мощностью от 0,5 до 15 кВт целесообразно использовать на долгоживущих пилотируемых и беспилотных космических аппаратах. Энергоустановки мощностью от 15 до 200 кВт и более целесообразно применять на пилотируемых орбитальных станциях или на обитаемых лунных базах с большими потребными мощностями. Так, по проекту “SP-100” для планируемой лунной базы в США создается ядерная энергоустановка с тремя двигателями Стирлинга общей мощностью 250 кВт и массой 3000 кг.

В 2011 год NASA отправила к спутникам Юпитера исследовательского зонда с ядерным реактором на борту. Но еще раньше — в 2009 году — атомный двигатель планируется использовать в очередной американской марсианской миссии. Разрабатывает «атомные Стирлинги» для NASA компания Lockheed Martin и Центр Гленна. В настоящее время уже разработан двигатель Стирлинга мощностью 25 кВт, который будет установлен в энергетическую установку с радиоизотопной накачкой.

Рис. 5.

Программа ядерных источников питания (Nuclear Power Program) имеет целью резко (на 1-2 порядка) повысить научную отдачу межпланетных миссий за счет увеличения продолжительности работы и производительности космических аппаратов и приборов, размещения на МКС нескольких посадочных аппаратов, приборов с высоким энергопотреблением, а также организации высокоскоростных каналов связи.

Энергетические установки с двигателями Стирлинга, работающими на нетрадиционном газовом топливе (биогаз, свалочный газ, попутном нефтяном газе и т.д.).

Одним из направлений применения местных биоресурсов является проект энергоснабжения небольшого населенного пункта с использованием двигателей Стирлинга, работающих на биогазе. Биогаз вырабатывается в метантенках на окраине поселка и подается по трубопроводам к индивидуальным домам, в которых установлены когенерационные установки с двигателями Стирлинга. На рис. 6 представлен эскиз данного проекта.

Биогаз представляет собой смесь метана и углекислого газа и является продуктом метанового брожения органических веществ растительного и животного происхождения, осуществляемого специфическим природным биоценозом анаэробных бактерий различных физиологических групп. Во время сбраживания в навозе развивается микрофлора, которая последовательно разрушает органические вещества до кислот, а последние под действием синтрофный и метанообразующих бактерий превращаются в газообразные продукты – метан и углекислоту.

Перспективным направлением является и использования в двигателях Стирлинга в качестве топлива биогаза из городских твердых бытовых отходов (ТБО). Для производства биогаза из ТБО, измельченные отходы в метантенке перемешивают с канализационным осадок из первичных и вторичных отстойников очистных сооружений. В 2005 году впервые в мире в Китае был создан экспериментальный энергетический модуль мощностью 250 кВт с 5 двигателями Стирлинга, работающими на биогазе из городских твердых бытовых отходов. Испытания прошли успешно в течении 3 лет и в настоящее время принимается решение властями Китая о создании таких энергетических модулей на свалках твердых бытовых отходов всех городов Китая.

Рис. 7. Двигатель Стирлинга мощностью 50 кВт

Автономные энергетические установки с двигателями Стирлинга (стирлинг-генераторы) незаменимы в нефтегазовой промышленности при освоении новых месторождений, особенно в условиях Крайнего Севера и шельфа арктических морей, где нужна серьезная энерговооруженность разведочных, буровых, сварочных и других работ.

В этих условиях в качестве топлива можно будет использовать неочищенный природный газ, попутный нефтяной газ, добываемый совместно с нефтью, и газовый конденсат. Столь широкий спектр топлив делает стирлинг-генераторы универсальными источниками энергии. Таким образом, исчезает проблема с обеспечением энергией буровых скважин, вахтовых поселков, узлов связи и других автономных систем.

В настоящее время только в Российской Федерации ежегодно пропадает до 50 млрд. м3 попутного газа, который выходит вместе с нефтью. Собирать его сложно и дорого, использовать в качестве моторного топлива для двигателей внутреннего сгорания нельзя из-за постоянно меняющегося фракционного состава, и чтобы газ не загрязнял атмосферу, он попросту сжигается. Однако этот газ может быть приемлемым моторным топливом для энергетических установок с двигателями Стирлинга.

По предварительным расчетам, стрилинг-генератор мощностью 100 кВт, работающий на природном или попутном нефтяном газе, сможет обеспечить электроэнергией и теплом вахтовый поселок газовиков, нефтяников или геологов численностью до 50 человек. Отпадает необходимость завозить топливо с материка и не наносить ущерб природе, поскольку минимизируются вредные выбросы.

Об экономической целесообразности серийного производства двигателей Стирлинга в Российской Федерации

В мировых обзорах по энергопреобразующей тех­нике, двигатель Стирлинга рассматривается как двигатель, обладающий наибольшими возможностями для дальнейшей разработки. Двигатель Стирлинга относится к классу двигателей с внешним подводом теплоты (ДВПТ). В связи с этим, по сравнению с ДВС, в двигателях Стирлинга про­цесс горения осуществляется вне рабочих цилиндров и протекает более равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двига­теля, плавном характере теплогидравлических процессов рабочего тела внутреннего контура, при отсутствии газораспределительного механизма клапанов.

Низкий уровень шума, малая токсичность отработанных газов, возможность работы на раз­личных топливах, большой ресурс, сравнимые размеры и масса, хорошие характеристики крутящегося момента — все эти параметры дают возмож­ность машинам Стирлинга в ближайшее время значительно потеснить двига­тели других типов. В настоящее время наиболее перспективным является производство двигателей Стирлинга мощностью от 0,1 до 100 кВт, но уже в ближайшей время на мировом рынке появятся высокоэффективные двигатели Стирлинга мощностью до 1000 кВт.

К сожалению, в России из-за общего экономического спада разработкой машин Стирлинга на государственном уровне никто не занимается, хотя до 1990 года исследования в этой области техники проводились в 15 организациях военно-промышленного комплекса.

Учитывая, что в настоящее время в России практически отсутствует серийное производство конкурентоспособных энергетических установок мощностью от 1 до 50 кВт, производство высокоэффективных и экологически чистых машин Стирлинга является наиболее перспективным направлением в развитии отечественного машиностроения. Проведенные маркетинговые исследования показывают, что емкость отечественного рынка энергетических установок данного мощностного ряда составляет до 60 тыс. установок в год. Основными областями применения энергетических установок с двигателями Стирлинга в Российской Федерации являются: когенерация с использованием местного топлива; автономные источники для нефтегазового комплекса, включая катодную защиту; автономные источники для ЖКХ населенных пунктов; использование бросовой теплоты отработанных газов котельных установок и транспортных средств; анаэробные установки и др.

Наиболее перспективным является серийное производство электрогенераторов небольшой мощности с модификацией двигателя Стирлинга под местное биотопливо: торф, отходы сельского хозяйства и ле­соперерабатывающей промышленности. Новая технология открывает широкие возможности для снабжения электроэнергией и теплом не газифицированных сельских районов, поселков, фермерских хозяйств, животноводческих ферм, птицефабрик и т.д. Она также поможет решить многие проблемы жилищно-коммунальных хозяйств городов.

Серийное производство двигателей Стирлинга позволит обеспечить загрузку оставшихся высокотехнологичных предприятий отечественного машиностроения, конверсию ряда оборонных предприятий страны, экспорт наукоемких технологий в области автономной энергетики. С учетом имеющегося более чем 40-летнего опыта серийного производства

Источник

Поделиться с друзьями
Adblock
detector