Что такое плавкий генератор

Что такое термоэлектрический генератор?

Согласно мировой статистике, от общего числа выработанной электроэнергии, на ТЭС приходится более 60%. Как известно, для работы тепловых электростанций необходимо органическое топливо, запасы которого не бесконечны. Помимо того, положенный в основу техпроцесс не является экологически чистым. Но низкая стоимость оргтоплива и высокий КПД ТЭС, позволяет получать «дешевое» электричество, что оправдывает применение данной технологии. Выход из сложившейся ситуации – альтернативные источники энергии, к таковым относятся термоэлектрические генераторы (далее ТЭГ), о них и пойдет речь в этой статье.

Что такое термоэлектрический генератор?

Так принято называть устройство, позволяющее преобразовать тепловую энергию в электрическую. Следует уточнить, что термин «Тепловая» не совсем точен, поскольку тепло, это способ передачи, а не отдельный вид энергии. Под данным определением подразумевается общая кинетическая энергия молекул, атомов и других структурных элементов, из которых состоит вещество.

Несмотря на то, что на ТЭС сжигается топливо для получения электричества, ее нельзя отнести к ТЭГ. На таких станциях тепловая энергия вначале преобразуется в кинетическую, а она уже в электрическую. То есть, топливо сжигается для получения из воды пара, который вращает турбину электрического генератора.

Схема работы ТЭС

Исходя из выше изложенного, следует уточнить, что ТЕГ должен генерировать электроэнергию без промежуточных преобразований.

Принцип работы

В основе ТЭГ лежит термоэлектрическое явление, описанное в начале 20-х годов XIX века немецким ученым-физиком Томасом Иоганном Зеебеком. Он обнаружил появление ЭДС в цепи замкнутого типа, состоящей из проводника и сурьмы, при условии создания разности температур в местах, где эти материалы контактируют. Изображение устройства, при помощи которого был зафиксирован данный эффект, представлено ниже.

Обозначения:

  • 1 – медный проводник.
  • 2 – проводник из сурьмы.
  • 3 – стрелка компаса.
  • А и В – места контакта двух проводников.

При нагревании одного из контактов стрелка отклонялась, что свидетельствовало о наличии магнитного поля, вызванного ЭДС. При нагреве другого контакта, направление ЭДС менялось на противоположное. Соответственно, при разрыве цепи, можно зафиксировать разность потенциалов на ее концах.

Через 12 лет, после публикации Зеебеком результатов своих опытов, французским физиком Жаном Пельтье был обнаружен обратный эффект. Если через цепь термопары пропускать ток, то в местах контакта этих веществ возникает разность температур. Мы не будем приводить описание опыта Пельтье, а также данные по современным одноименным элементам, эту информацию можно найти на нашем сайте.

По сути, оба эти эффекта обратные стороны одного термоэлектрического явления, позволяющего напрямую получать электричество из тепловой энергии. Но, до открытия полупроводников, термоэлектрический эффект не находил практического применения, ввиду неприемлемо низкого КПД. Поднять его до 5% удалось только в середине пошлого века. К сожалению, даже у современных полупроводниковых элементов, этот показатель остается на уровне 8%-12%, что не позволяет рассматривать генераторы данного типа в качестве серьезных конкурентов ТЭС.

Современный элемент Пельтье с указанием размеров

Перспективы

В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД. Проблема заключается в том, что под данные исследования затруднительно подвести теоретическую базу, поэтому приходится полагаться только на результаты экспериментов. Учитывая, что на эффект влияет процентное соотношение и состав сплавов материала для термопар, говорить о ближайших перспективах неблагодарное занятие.

Велика вероятность, что в ближайшее время для повышения добротности термоэлементов, разработчики перейдут на другой уровень изготовления сплава для термопар, с использованием нано-технологий, ям квантования и т.д.

Вполне возможно, что будет разработан совершенно иной принцип с использованием нетрадиционных материалов. В качестве примера можно привести эксперименты, проводимые в Калифорнийском университете, где для замены термопары использовалась искусственная синтезированная молекула, которая соединяла два золотых микро проводника.

Молекула вместо термопары

Первые опыты показали возможность реализации идеи, насколько она перспективна, покажет время.

Сфера применения и виды термоэлектрических генераторов

В виду низкого КПД для ТЭГ остается два варианта применения:

  1. В местах, где недоступны другие источники электроэнергии.
  2. В процессах, где имеется избыток тепла.

Приведем несколько примеров таких устройств.

Энергопечи

Данные, устройства, совмещающие в себе следующие функции:

  • Варочной поверхности.
  • Обогревателя.
  • Источника электроэнергии.

Это прекрасный образец, объединяющий все оба варианта применения.

Индигирка – три в одном

У представленной на рисунке энергопечи следующие параметры:

  • Вес – чуть больше 50 килограмм (без учета топлива).
  • Размеры: 65х43х54 см (с разобранным дымоходом).
  • Оптимальная загрузка оргтоплива – 30 литров. Допускается использование лиственной древесины, торфа, бурового (не каменного!) угля.
  • Средняя тепловая мощность устройства около 4,5 кВт.
  • Мощность электронагрузки от 45-50 Вт.
  • Стабилизированное постоянное напряжение на выходе – 12 В.

Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.

Радиоизотопные ТЭГ

В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов. Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток – необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.

Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества, используемого в качестве топлива. К последнему предъявляется следующий ряд требований:

  • Высокий коэффициент объемной активности, то есть небольшое количество вещества должно обеспечивать нужный уровень выделения энергии.
  • Поддержка необходимого уровня мощности в течение длительного времени. На этот параметр отвечает, как было отмечено выше, влияет период полураспада, например у стронция-90 он 29 лет, следовательно, источник через это время потеряет половину своей мощности.
  • Ионизирующее излучение должно быть удобным для утилизации, то есть в нем должны преобладать α-частицы.
  • Необходимый уровень безопасности. То есть ионизирующее излучение не должно нанести вред экологии (в случае эксплуатации на земле) и питающемуся от такого источника оборудованию.

Таким критериям отвечают изотопы кюрия-244, плутония-238 и упоминавшийся выше стронций-90.

Сфера применения РИТЕГ

Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работавший на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.

Радиоизотопное «сердце» Кассини

Кассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.

На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее детали относятся к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно получать электроэнергию другим способом. То есть, речь идет о труднодоступных регионах.

К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.

РИТЕГ поднятый с 14-митровой глубины возле Сахалина

Как сделать термоэлектрический генератор своими руками?

В завершении расскажем, как сделать ТЕГ, которым можно пользоваться в турпоходе, на охоте или рыбалке. Естественно, мощность таких устройств будет уступать радиоизотопным генераторам энергии, но ввиду труднодоступности плутония, и его неприятным свойством наносить вред человеческому организму придется довольствоваться малым.

Нам понадобится термоэлектрический элемент, например, ТЕС1 12710. Желательно использовать несколько элементов, подключенных параллельно, для увеличения мощности. К сожалению, тут есть очень серьезный нюанс, потребуется подобрать элементы со сходными параметрами, что у китайской продукции практически не реально, а использовать брендовую дорого, проще купить готовый генератор. Если использовать один модуль Пельте, то его мощности едва хватит для зарядки телефона или другого гаджета. Нам также понадобится металлический корпус, например, отслужившего блока питания ПК и радиатор от процессора.

Основные моменты сборки:

Наносим на корпус термопасту в месте, где будет крепиться термоэлектрический элемент, прислоняем его и фиксируем радиатором. В результате у нас получается конструкция, как на нижнем рисунке.

Туристический ТЭГ

В качестве топлива лучше всего использовать «сухой спирт».

Теперь необходимо подключить к нашему источнику стабилизатор напряжения (схему можно найти на нашем сайте или в других тематических источниках).

Конструкция готова, можно приступать к проверке.

Источник

Что такое генератор

Что такое генератор? Это электромеханический прибор, который преобразует кинетическую энергию в электрический переменный ток. Основой энергетического преобразования является вращающееся магнитное поле. Понятие генератора включает в себя массу устройств различного принципа действия. Это гальванические, электростатические приборы, солнечные батареи, турбины электростанций и пр. В статье пойдёт речь именно о генераторах электрической энергии.

Принцип работы электрогенератора

В основу работы агрегатов, преобразующих энергию, положен закон Фарадея об электродвижущей силе (ЭДС). Учёный открыл закон, который объяснил природу появления тока в металлическом контуре (рамке), вращающемуся в однородном магнитном поле (явление индукции). Ток возникает также при вращении постоянных магнитов вокруг металлического контура.

Простейшая схема генератора представляется в виде вращающейся металлической рамки между двумя разно полюсными магнитами. На оси рамки помещают токосъёмные кольца, которые получают заряд электрического тока и передают его дальше по проводникам.

В действительности статор (неподвижная часть прибора) состоит из электромагнитов, а ротором служит группа рамных проводников. Устройство представляет обратный электромотор. Электродвигатель поглощает электрический ток и заставляет вращаться ротор. Электрический генератор, преобразовывающий кинематическую энергию механического вращения в ЭДС, называют индукционным генератором.

Классификация генераторов

Классификация преобразователей энергии даёт чёткое понятие – что такое генератор электрического тока. Различают электрические генераторы по следующим признакам:

  • автономность;
  • фазность;
  • режим работы;
  • сфера применения.

Автономность

Главное преимущество, которым обладает электрический генератор, – это его полная независимость от централизованных поставщиков энергии. Автономность электротехнического оборудования бывает стационарной и мобильной.

Стационарные

Обычно это генераторные станции, работающие от дизельных двигателей. Станции используют для электроснабжения потребителей в местах, удалённых от централизованных электрических сетей.

Стационарные генераторные станции необходимы для обеспечения током производственных процессов там, где даже кратковременные перебои поставки электроэнергии недопустимы.

Мобильные

Электрогенераторы мобильного типа выполнены в виде компактных аппаратов, которые можно перемещать в пространстве. Передвижные станции используют для электросварки, местного освещения, снабжения током бытовых электроприборов и многое другое.

Оборудование включает в себя двигатель внутреннего сгорания, работающий на бензине или дизельном топливе. Агрегаты имеют различные габариты. Компактный аппарат может транспортировать один человек. Существуют мобильные агрегаты, которые устанавливаются на специальном автомобильном прицепе.

Фазность

По фазовой структуре электрического потока различают однофазные и трёхфазные агрегаты.

Однофазные

Генераторы, производящие однофазный ток, предназначены в основном для питания бытовых приборов. Чаще всего это мобильные аппараты. Однофазными агрегатами хозяева оснащают свои частные домовладения для бытовых нужд (освещения, питания электротехники и др.).

Трёхфазные

Генераторные источники трёхфазного тока используются для питания силового электрооборудования. В некоторых случаях получаемый трёхфазный ток разделяют по фазам. Таким образом, делают развод электропроводки по всему дому для питания бытовых электроприборов.

Важно! Все ветви фазового разделения должны равняться между собой мощности потребления. Если разница нагрузок будет велика, то генератор быстро выйдет из строя.

Режимы работы

В зависимости от того, в каком режиме эксплуатируются агрегаты, их подразделяют на основные и резервные.

Основные

Аппараты предназначены для работы в постоянном режиме. Мощные электрогенераторы с дизельными двигателями относят к промышленным установкам. Устанавливаются там, где требуется получение электроэнергии круглосуточно.

Резервные

Само название агрегатов говорит о применении их в исключительных случаях – при внезапном отключении централизованного электроснабжения. Генераторы могут включаться в работу при срабатывании реле, реагирующего на исчезновение напряжения в электросети централизованного источника. Резервные аппараты рассчитаны на беспрерывную работу в течение нескольких часов.

Сфера применения

Генераторы изготавливают, рассчитанные на две сферы применения: для быта и производства.

Сейчас торговая сеть предлагает широкий выбор бытовых генераторов. Это однофазные установки, предназначенные для аварийного обеспечения электроэнергией частных домостроений. Также компактные агрегаты используют для питания выносного электрооборудования. Для бытовых электроприборов, использующих цифровую элементную базу важно качество тока. Устройство должно выдавать электроэнергию следующих параметров: 220 В, 1 А, 50 Гц.

Мощные бытовые агрегаты используют для электросварочных работ. Их преимуществом является способность производить ток большой силы для получения электрической дуги.

Обратите внимание! Если в инструкции бытового аппарата производитель не оговаривает применение для электросварки, то его нельзя использовать для сварочных работ. В противном случае генератор выйдет из строя.

Производство

Независимыми мощными стационарными генераторами оснащают цеха промышленных предприятий, жилые районы, строительные объекты, больницы и объёмные общественные здания.

Виды бытовых генераторов

Электротехническая промышленность выпускает бытовые генераторы переменного тока трёх видов:

Газовые

Генераторы газового типа выдают ток низкой себестоимости. Стоимость 1 кВт/ часа составляет 3 рубля. Газовые агрегаты используют как резервные источники электроэнергии. Устройства предназначены для режима кратковременного включения при сбое поставки электрического тока централизованной сетью электроснабжения.

В частных домов используют газовые установки мощностью 5 кВт. Агрегаты оснащены системой автозапуска. При отключении электричества аппарат автоматически включается в работу и восстанавливает напряжение в электросети дома. Генераторы с воздушным охлаждением после 12 часов непрерывной работы требуют перерыва.

Выгодно устанавливать такие преобразователи энергии при центральном газопроводе. Автономное снабжение сжатым природным газом установок связано с рядом условий, таких, как наличие газобаллонного сервиса поставки энергоносителя и технически исправного приёмного оборудования в доме.

Одними из достоинств газовых агрегатов является то, что генераторы работают практически бесшумно, выхлоп продуктов сгорания топлива сведён к 0.

Газовые генераторы устанавливают вне дома. Для обеспечения бесперебойной работы устройства в зимний период помещают в специальные кожухи. Существующие модели – с жидкостным охлаждением, какое допускает их установку внутри дома.

Бензиновые

Бензиновые генераторы в основной своей массе изготавливают мощностью, не превышающей 20 кВт. Устройства используют для аварийного обеспечения электричеством загородных домов, дач, а также для питания ручных электроинструментов, небольших станков и прочее. Генераторы могут поддерживать освещение придомовой территории, автомобильной стоянки и торговых площадей.

Дополнительная информация. Стандартное топливо для агрегатов – это бензин марки АИ-92. Кратковременно можно заливать в бак оборудования бензин АИ-76 и АИ-95.

Бензиновые генераторы переменного тока могут быть мобильными и стационарными. Особо мощные тяжёлые установки оснащают колёсной парой. В зависимости от модели, устройства оснащают ручным запуском или стартером. Для понижения шумности работы двигателя внутреннего сгорания аппарат помещают в звукопоглощающий кожух.

Дизельные

Дизельные генераторы переменного тока представляют устройства, мощность которых достигает до 3 мВт. Агрегаты могут служить постоянными источниками электроэнергии для загородных домов и дач. Автономные дизельные источники переменного электрического тока питают мощное деревообрабатывающее оборудование, станки различного назначения. Дизель-генераторы могут снабжать током целые посёлки.

Дизельные установки изготавливают в стационарном и мобильном варианте. Агрегаты обладают большой шумностью. Поэтому в некоторых случаях их помещают в специальные шумоизоляционные кожухи.

По сравнению с бензиновыми аналогами, дизель-генераторы потребляют топливо в меньшем объёме, которое стоит дешевле, чем бензин. Дорогие модели способны контролировать управление процессом генерации энергии, автоматически включаться в работу при возникновении аварийных ситуаций в сети центрального электроснабжения.

Современный рынок электротехники располагает огромным ассортиментом генераторов переменного тока. Модели различных систем питания с большим диапазоном мощности удовлетворят любые требования потребителей.

Видео

Источник

Поделиться с друзьями
Adblock
detector