Меню

Что такое генератор сигналов низкой частоты



Как выбрать генератор сигналов, чтобы не пожалеть о покупке?

Если вы читали предыдущую статью «Как выбрать осциллограф», то уже знаете, что при исследовании и тестировании современных компонентов и радиосистем осциллограф идёт рука об руку с генератором сигналов.

На рынке представлено большое количество моделей генераторов сигналов, создающих – от простых синусоидальных и импульсных сигналов до мощных наносекундных импульсов и сложнейших сигналов произвольной формы. Сегодня в статье расскажем как выбрать среди многообразия моделей наиболее оптимальный для ваших целей генератор сигналов, сэкономив время и деньги.

Генератор сигналов, как для профессионального радиотехника, так и для радиолюбителя – прибор первой необходимости, который востребован наравне с осциллографом и мультиметром. По сути работы генератор сигналов представляет собой тестовый передатчик.

Сформированные сигналы отличаются различными типами модуляции – от аналоговых АМ, ЧМ и цифровых I/Q-видов модуляции до специальных сигналов стандартов мобильной связи: GSM, W-CDMA, HSPA, LTE, LTE Advanced, GPS и беспроводных сетей. Прибор подает тестовые сигналы на испытуемые компоненты, такие как фильтры, готовые модули или усилители. Поэтому, если не хотите работать кустарно, лепить радиоприбор на коленке, используйте генератор сигналов.

Что такое генератор сигналов

Генератор сигнала – прибор, применяемый для генерации сигналов различных частот, которые называются воздействующими или управляющими сигналами. По изменениям формы сигналов судят о поведении в работе диагностируемого оборудования. Генераторы сигналов необходимы при электроизмерениях, тестировании радио- и электронных устройств в процессе их разработки, диагностики или определения соответствия заявленным параметрам.

Принцип работы генератора сигналов

При разработке электронных модулей, компонентов схемы и прочих операциях генератор сигналов работает в качестве источника воздействующего сигнала.

Генератор формирует сигнал с изменяемой по времени амплитудой, который подается на тестируемый элемент или высокочастотный модуль, фильтр. Форма сигнала может быть произвольной, а может быть в виде любой периодической функции, например, синусоиды. Может представлять собой цифровой импульс или двоичную последовательность. Наиболее распространенные формы сигналов — синусоидальные сигналы, меандры и прямоугольные сигналы, пилообразные и треугольные сигналы.

Что представляет собой сигнал генератора?

Сигнал является биполярным истинным сигналом переменного тока с пиковыми значениями, которые колеблются относительно определенного уровня постоянного напряжения.

Также это могут быть сигналы со смещением, которые опускаются и поднимаются ниже или выше от расположения нулевого уровня (0 В). Под переменным током понимается любой изменяющий свое значение сигнал, независимо от привязки к нулю.

Таким образом, тестирование приборов заключается в подаче сигнала идеальной формы или с добавлением искажений, то есть ошибки, которая возможна в процессе работы диагностируемого прибора.

Главное достоинство генератора сигнала — это возможность имитации реальной ошибки, которую можно предсказать в определенном месте и в нужное время с помощью исследуемой схемы.

В итоге, способность реагировать тестируемого устройства на искажение демонстрирует его готовность работать в неблагоприятных условиях аварийного режима.

Как вывод можно сказать, что сигнал на выходе модуля анализируется осциллографом или другим прибором, например, анализатором спектра или измерителем мощности. По результатам анализа судят о корректной работе проверяемого устройства. По необходимости генератором можно добавить шум на тестируемый сигнал или имитировать замирание входного сигнала.

Основные применения генератора сигналов

Вы спросите, а зачем он нужен. Например, такой прибор как генератор сигналов A96 DDS понадобится, чтобы получить в работе над радиопередатчиком и приемником требуемую форму сигналов, чтобы настраивать УМЗЧ и измерять искажения или фронты.

Даже простейший бюджетный прибор, такой как функциональный генератор сигналов на ICL8038 даст представление о кривой на выходе при подаче синуса, треугольника или меандра, позволит увидеть результат, который получается на выходе.

Подобные устройства используются в прикладных областях при формировании низкочастотных навигационных сигналов, применяются для мобильной сотовой связи, спутников и радиолокации с длинной волны от миллиметрового диапазона. Чтобы выполнять работу в любых условиях придуманы даже карманные генераторы синусоидальных сигналов, такие как Fg-100. Прибор используется вместе с осциллографом для тестирования и наладки электронных схем.

Устройства стабилизируют синтезированную частоту, поддерживают калиброванный выходной уровень сигнала и дают возможность дистанционного управления.

Иногда получается, что генератор сигналов востребован даже чаще, чем осциллограф. Например, он нужен:

  1. Когда надо проверить часть схемы и сгенерировать ШИМ (широтно-импульсную модуляцию).
  2. Когда нужно проверить ЦАП (цифровые-аналоговые преобразователи).
  3. Для определения сигналов различной формы и для постоянного напряжения, например при подаче управляющего сигнала, а лабораторный блок питания уже задействован.
  4. Когда нужно проверить нелинейность АЦП (аналого-цифрового преобразователя).
  5. Чтобы определить коэффициент преобразования и частоты трансформатора.
  6. Чтобы запитать микросхему или ее часть, когда не желателен большой ток.
  7. Когда, благодаря невысокому сопротивлению до 50 Ом, нужно проверить динамик, зуммер или определить на какую частоту нужно настроить срез фильтра.
  8. Когда надо проверить усилители, снять ампер-частотную характеристику фильтра, определиться с точностью мультиметра или частотомера, или токовых клещей.
Читайте также:  Структурная схема генераторов шума

Цифровой генератор сигналов или аналоговый, что лучше?

Аналоговые приборы формируют высококачественные ВЧ-сигналы, обеспечивают АМ/ЧМ, импульсную и ФМ-модуляцию. Аналоговые источники могут качать частоты в заданном диапазоне и даже формируют стандартные сигналы генератора, например, пилообразной и треугольной формы.

Аналоговые генераторы сигналов отличаются:

  1. Высокой частотой спектра до 10 дБн и отсутствием гармоник.
  2. Низким собственным широкополосным шумом до 160 дБн.
  3. Низким однополосным фазовым шумом до 140 дБн/Гц с отстройкой от несущей 10 кГц, f = 1 ГГц, полоса измерений 1Гц.

Однако подавляющее большинство генераторов построены на цифровом принципе. Некоторые приборы универсальны и подходят под требования и аналоговых устройств, и цифровых. Принимать надо то решение, которое оптимально и отвечает выгоде.

Например, генераторы стандартных функций и произвольной формы, они работают с любыми сигналами и смешанными тоже. Для создания и изменения сигналов любой формы применяется метод дискретизации. Для синхронизации с другими приборами и цифровыми выводами генераторы дополнены выходами маркеров.

Для каких целей лучше всего использовать цифровые генераторы сигнала?

Это тестирование в предельных режимах шин компьютеров, телекоммуникационных устройств и прочих приборов цифрового типа.

Если подробнее, то векторные приборы бывают импульсные с потоком сигналов прямоугольной формы или с высокочастотными импульсами на небольшом числе выходов. Устройства формируют сигналы в пределах информационной пропускной способности системы с помощью встроенного I/Q модулятора.

Приборы обладают возможностью создавать комплексные виды модуляции QPSK и 1024QAM. Подобные устройства тестируют высокоскоростное цифровое оборудование.

Векторные генераторы сигналов, или как их еще называют генераторы данных цифровой последовательности, создают 8, 16 и более синхронных потоков импульсов.

Есть более сложные модели. Возьмем приборы, работа которых построена на прямом цифровом синтезе сигналов и отличается большей конструктивной сложностью и высокой функциональностью.

Прямой цифровой синтез сигналов (DDS) как основной метод генерации синусоидальных сигналов

Прямой цифровой, или когерентный синтез (Direct Digital Synthesis или DDS) – технология генерации сигналов специальной и произвольной формы. Прибор, основанный на такой технологии, синтезирует гармонические сигналы множественных частот с высокой точностью и стабильностью из одного или нескольких опорных колебаний.

Принцип работы устройств, работающих с синтезом синусоидальных сигналов построен без применения колебательных компонентов. Для работы используется функция с потоком цифровых данных, соответствующих нужной форме сигнала, закрепленная в памяти. Поток данных подается на вход цифро-аналогового преобразователя, где происходит их изменение в последовательность уровней напряжения, приближенных к сигналу требуемой формы.

Метод уникален цифровой определенностью, то есть частота, амплитуда и фаза сигнала точно известны и подконтрольны в любой момент времени. Устройства DDS стойкие перед температурным воздействием и не подвержены старению.

Достоинства метода DDS:

  1. Цифровое управление частотой и фазой сигнала на выходе.
  2. Высокое разрешение по частоте и фазе.
  3. Переход на другую частоту или фазу, перестройка по частоте без разрыва фазы происходит быстро, без выбросов и прочих аномалий, связанных с переходными процессами.
  4. Для архитектуры, основанной на ЦПС, не обязательно применять точную подстройку опорной частоты из-за ее малого шага перестройки, обеспечена возможностью параметрической температурной компенсации.
  5. Способность организации с помощью цифрового интерфейса микроконтроллерного управления.

Синтезатор частоты, применяемый в аппаратуре связи, служит ядром настройки и определяет ее главные технические параметры. Благодаря высокой степени интеграции, программному управлению и небольшим размерам, синтезатор удовлетворяет экономическим и техническим показателям. Например, генератор сигналов произвольной формы MHS-5200A.

Устройства цифрового синтеза выпускаются в интегральном виде с применением субмикронной CMOS-технологии, 3-вольтовой логики и миниатюрного корпуса.

Типы генераторов сигналов

  1. Генераторы синусоидальных сигналов модулированного или не модулированного типа – это усилитель с положительной обратной связью, применяется для тестирования радиоэлектронных устройств.
  2. Генераторы смешанных сигналов/функциональные генераторы:
    • генераторы сигналов произвольной формы (AWG) – устройство с высокой скоростью выборки за счет применения технологий сверхбыстрых переключающих гетеропереходных приборов на германии и арсениде галлия. Прибор, кроме синусоидального сигнала, может генерировать стандартные сигналы, такие как: меандр (1 мкГц — 50 МГц), пилообразный (1 мкГц – 1 МГц), импульсный (1 мкГц – 25 МГц), шумовой (полоса 50 МГц) и пользовательские сигналы с диапазоном частот от 1 мкГц до 10 МГц с возрастанием и убыванием по экспоненциальному закону, Sin(x)/x и сигнал постоянного тока. Генераторы AWG легко формируют и сохраняют во внутреннюю память сигналы произвольной формы. Рисунок 3. Упрощенная функциональная схема генераторов класса AWG
    • генераторы сигналов произвольной формы и стандартных функций (AFG) – лучшее соотношение цена и качество в своем классе. Например, генератор сигналов JUNCE JDS2900 — 15M отличается стабильностью и быстрым откликом на изменение частоты. Имеет два канала с диапазоном частот до 25 МГц и амплитудой от 1 мВпик-пик до 10 Впик-пик во всем рабочем диапазоне. Генерирует все типы сигналов, нужные для проведения лабораторных работ. Может работать в нескольких режимах и обладает встроенным частотомером до 200 МГц. Рисунок 4. Функциональная схема генератора AFG
  3. Источники логических сигналов. Приборы для тестирования цифровой аппаратуры с длинными непрерывными двоичными последовательностями со специальным содержимым и временными характеристиками.
    • генераторы импульсов или генераторы временных соотношений (DTG) создают двоичную информацию большого объема. Такие приборы также называются генераторами кодовых соотношений, тестирующими компьютерные шины, микропроцессоры, дисковые накопители, логические интегральные схемы и прочие цифровые элементы.
    • генераторы цифровых последовательностей (ARB) или генераторы импульсной последовательности выводят поток импульсов или меандр на небольшое число выводов с высокой частотой. Высокая частота и крутой фронт позволяют тестировать высокоскоростное цифровое оборудование.
Читайте также:  То генератора без снятия с двигателя

Дополнительно, генераторы подразделяют по частотному диапазону на:

  • генераторы НЧ-сигналов (низкочастотные), которые строятся как RC-генераторы, работают от 20 Гц до 200 кГц, иногда от до 2 или 20 МГц. Например, низкочастотный генератор сигналов Longwei TAG-101 с полосой пропускания от 10 Гц до 1 МГц с минимальным искажением в пределах нормы ±5%.
  • генераторы ВЧ-сигналов (высокочастотные LC-генераторы) для работы в радиочастотном диапазоне с различными видами модуляции на частоты до 100 – 150 МГц. Работают на основе LC-генераторов, обладают высокой степенью экранирования, без чего точные измерения при малых уровнях ВЧ-сигналов невозможны. Отличаются низким уровнем шумности, подходят для измерений с высоким уровнем требований.

С разновидностями генераторов сигналов цифрового типа разобрались. Как видим, линейка приборов отличается большим разнообразием.

Поставку надежных генераторов сигналов доверьте Суперайс

Поэтому, чтобы не ошибиться, обсудим, какими характеристиками нужно руководствуются, чтобы правильно выбрать генератор для своей задачи.

Основные параметры генератора сигналов

Объем памяти (длина записи)

От объема памяти или числа ячеек памяти для хранения сигнальных последовательностей зависит достоверность воспроизведения сигнала.

Вывод: больший объем памяти позволит сохранить большое количество мелких элементов формы сигнала, т.е. больше периодов сигнала останутся зафиксированными.

Частота дискретизации

Частота дискретизации (тактовая частота, частота выборок) — это количество выборок за определенный интервал времени. Определяет максимальную частотную составляющую выходного сигнала.

Вывод: при выборе обращайте внимание на то, чтобы частота дискретизации превышала минимум вдвое частоту самой высокой спектральной составляющей генерируемого сигнала. От частоты дискретизации зависит минимальный интервал времени, который используют при создании сигналов.

Разрешение по вертикали (по амплитуде)

Вертикальное разрешение или динамический диапазон определяется разрядностью ЦАП: чем выше разрядность, тем четче разрешение. Показатель служит для определения выходного сигнала, показывает минимальное значение шага напряжения. Измеряется в децибел (дБ) по отношению к амплитуде, например генератор сигналов специальной формы UNI-T UTG1010A отличает высокое разрешение 14 бит вертикального разрешения и частотой дискретизации 125 Мвыб/сек, что обеспечивает быстрый отклик.

Вывод: разрешение по вертикали – это точность амплитуды и достоверное воспроизведение искажений сигнала. При выборе желательно принимать во внимание, что чем выше разрешение, тем ниже частота дискретизации.

Дополнительные параметры:

  • Полоса пропускания или скорость передачи данных — это диапазон частот выходного сигнала, который генератор может надёжно воспроизвести. Этот параметр быть достаточным для пропускания высших частотных составляющих сигнала без ухудшения его характеристик.
  • Число выходных каналов. Наличие независимых каналов повышает гибкость прибора в работе, за счет возможности генерации различных испытательных сигналов.
  • Функциональные возможности. Обращайте внимание на набор воспроизводимых стандартных сигналов, модуляцию, амплитуду на выходе и возможности редактирования сигнала.

Выбор генератора сигналов зависит от задач, которые вы преимущественно выполняете или от запросов, что вы ждете от прибора.

Если вам нужен портативный прибор для генерации сигналов самых различных форм, т.е. вам нужно воспроизводить интересующие сигналы и тестировать оборудование при том, что все эти операции нужно делать с незначительной амплитудой вектора ошибок и небольшим уровнем шума, то вам потребуется генератор с разрешением больше 10 бит и частотой дискретизации от 200 Мвыб/с до 50 Гвыб/с.

Читайте также:  Газовый генератор reg hg10 380

Такое устройство обеспечивает прямую генерацию сигналов с несущей до 18 ГГц или генерацию синфазных и квадратурных составляющих модулирующего сигнала. Например, генератор сигналов JUNCE JDS2900 — 50M.

Понадобилось выполнить несколько операций:

  • протестировать приборы;
  • подключить и синхронизировать несколько устройств;
  • проводить масштабные эксперименты и расширять настройки тестирования.

В этом случае вам понадобится прибор из серии AWG. Он обладает простыми настройками блока, а синхронизация для него занимает мало времени, освобождая время для основных операций. Как правило, у таких генераторов погрешность в синхронизации 10 пс, что говорит о высокой точности прибора. В комплекте предлагаются все кабели, разъемы и принадлежности, необходимые для работы.

Источник

Для чего нужен генератор сигналов

Генераторы сигналов – это приборы, позволяющие получать электрические, акустические и т.д. импульсы. Устройство может быть различного типа, но, обычно, прибор выбирают под какую-то определённую цель. При выборе решающую роль может играть форма, статические функции и энергетические показатели прибора. Устройство используют в медицинской сфере, а также в быту.

Цифровые генераторы https://digamma.by/katalog/generatory-signalov/ весьма популярны, так как являются приборами высокой точности. Первый генератор появился в 1887 году, его создал немецкий физик по имени Герман Герц. Он работал на основе индукционной катушки, был искровым и производил электромагнитные волны. В 1913 году другой немецкий учёный по имени Александр Мейснер произвёл электронный генератор с ламповым каскадом и общим катодом. В 1915 году учёным Ральфом Хартли была разработана ламповая или индуктивная система. А в 1919 году американский учёный Эдвин Колпитц создал устройство на электронной лампочке, которое подключалось к колебательному контуру при помощи ёмкостного разделителя напряжения. Позже учёными многих стран было произведено большое количество других вариантов электронных генераторов.

Виды генераторов сигналов

Приборы можно различить по форме сигнала. Они бывают синусоидальные, прямоугольные и в виде пилы. Помимо этого, они различаются по частоте. Бывают низкочастотные, либо высокочастотные. Устройства классифицируются также по принципу возбуждения, и делятся на независимые и самовозбуждение.

Генераторы синусоидального импульса, преимущественно, применяют во время проверки блоков питания, инверторов, а также других типов высокочастотной техники, в том числе, и радиоаппаратуры.

В низкочастотных генераторах присутствуют переменные резисторы. Они нужны для корректирования формы и частоты сигнала. Данный низкочастотный прибор подходит для настройки аудиоаппаратуры. Это может быть звуковой усилитель, проигрыватель и т.д. Ярким примером низкочастотного генератора является примитивный компьютер. Необходимо скачать драйверы, а затем подключить его к аппаратуре посредством переходника.

Стандартная система генератора звуковой частоты с микросхемами внутри. Напряжение подаётся в селектор, а сигнал генерируется в микросхеме, либо в нескольких микросхемах. Частота, при этом, настраивается с помощью модуляционного регулятора. Устройство отличается достаточно обширным диапазоном частоты, в отличие от аналогов.

Самыми точными приборами принято считать генераторы с импульсами произвольной конструкции. Прибор способен вырабатывать частоту от 70 Гц. Устройство подразделяют по степени синхронизации. Она зависит от вида коннектора, установленного в приспособление. Поэтому сигнал может быть усилен за 20-35 ньютон-секунд. Определённые виды генераторов работают в линейном и логарифмическом режимах одновременно. Режим можно поменять с помощью переключателя.

Контроллеры сложных сигналов получают импульсы сложной формы, поэтому в сборке имеются только многоканальные селекторы. Сигналы периодически усиливаются, а режим можно поменять с помощью регулятора. Примером такого прибора можно считать DDS (устройство по принципу прямого цифрового синтеза). Базовая плата оборудована микроконтроллерами, которые легко снимаются и устанавливаются на место. В некоторых типах генераторов такого рода микроконтроллер заменяется одним движением. В случае монтированного редактора, установить ограничители невозможно.

Чтобы пользоваться устройством, особых усилий прилагать не придётся, но важно заметить, что главное, тщательно и правильно его настроить. Принцип действия генератора сигнала основан на ускорении образования сигналов и воспроизведении их с максимальной точностью.

Практическое применение генераторов сигнала

Эти устройства используют в современных лабораториях разработчики электронных и измерительных приборов. Одни и те же генераторы могут быть применены в кабинетах от начального до продвинутого уровня. Генераторы используются в мобильном телефоне, технике для передачи данных, в радиоприёмниках, телеприёмниках, вычислительных машинах, инверторах, бытовых приборах, измерительных устройствах, медицинской аппаратуре. Находчивые обыватели нашли применение для иных целей. К примеру, прибором Tektonix AFG 3000 измеряли емкости, а для регулировки аэронавигационных систем использовали RStamp SMA100A.

Источник